Department of Chemistry, State University of New York, Potsdam, New York 13676, USA.
Metallomics. 2019 Oct 16;11(10):1635-1647. doi: 10.1039/c9mt00154a.
In mammals, the iron storage and detoxification protein ferritin is composed of two functionally and genetically distinct subunit types, H (heavy) and L (light). The two subunits co-assemble in various ratios, with a tissue specific distribution, to form shell-like protein structures of 24 subunits within which a mineralized iron core is stored. The H-subunits possess ferroxidase centers that catalyze the rapid oxidation of ferrous ions, whereas the L-subunit does not have such centers and is believed to play an important role in electron transfer reactions that occur during the uptake and release of iron. Pathogenic mutations on the L-chain lead to neuroferritinopathy, a neurodegenerative disease characterized by abnormal accumulation of ferritin inclusion bodies and iron in the central nervous system. Here, we have characterized the thermal stability, iron loading capacity, iron uptake, and iron release properties of ferritin heteropolymers carrying the three pathogenic L-ferritin mutants (L154fs, L167fs, and L148fs, which for simplicity we named Ln1, Ln2 and Ln3, respectively), and a non-pathogenic variant (L135P) bearing a single substitution on the 3-fold axes of L-subunits. The UV-Vis data show a similar iron loading capacity (ranging between 1800 to 2400 Fe(iii)/shell) for all ferritin samples examined in this study, with Ln2 holding the least amount of iron (i.e. 1800 Fe(iii)/shell). The three pathogenic L-ferritin mutants revealed higher rates of iron oxidation and iron release, suggesting that a few mutated L-chains on the heteropolymer have a significant effect on iron permeability through the ferritin shell. DSC thermograms showed a strong destabilization effect, the severity of which depends on the location of the frameshift mutations (i.e. wt heteropolymer ferritin ≅ homopolymer H-chain > L135P > Ln2 > Ln1 > Ln3). Variant L135P had only minor effects on the protein functionality and stability, suggesting that local melting of the 3-fold axes in this variant may not be responsible for neuroferritinopathy-like disorders. The data support the hypothesis that hereditary neuroferritinopathies are due to alterations of ferritin functionality and lower physical stability which correlate with the frameshifts introduced at the C-terminal sequence and explain the dominant transmission of the disorder.
在哺乳动物中,铁储存和解毒蛋白铁蛋白由两种功能和遗传上不同的亚基类型 H(重)和 L(轻)组成。这两种亚基以不同的比例共同组装,具有组织特异性分布,形成 24 个亚基的壳状蛋白结构,其中储存着矿化的铁核心。H 亚基具有铁氧化酶中心,可催化亚铁离子的快速氧化,而 L 亚基没有这种中心,据信在铁的摄取和释放过程中发生的电子转移反应中发挥重要作用。L 链上的致病性突变导致神经铁蛋白病,这是一种神经退行性疾病,其特征是铁蛋白包涵体和铁在中枢神经系统中的异常积累。在这里,我们对携带三种致病性 L 铁蛋白突变体(L154fs、L167fs 和 L148fs,为简单起见,我们分别命名为 Ln1、Ln2 和 Ln3)和一个在 L 亚基的 3 倍轴上带有单个取代的非致病性变体(L135P)的铁蛋白杂聚物的热稳定性、铁加载能力、铁摄取和铁释放特性进行了表征。紫外可见数据显示,本研究中检查的所有铁蛋白样品的铁加载能力(范围在 1800 至 2400 Fe(iii)/壳)相似,其中 Ln2 结合的铁最少(即 1800 Fe(iii)/壳)。三种致病性 L 铁蛋白突变体显示出更高的铁氧化和铁释放速率,这表明杂聚物上几个突变的 L 链对铁蛋白壳中铁的渗透性有重大影响。DSC 热谱图显示出强烈的失稳效应,其严重程度取决于移码突变的位置(即 wt 杂聚物铁蛋白≅同聚物 H 链>L135P>Ln2>Ln1>Ln3)。变体 L135P 对蛋白质功能和稳定性只有很小的影响,这表明该变体中 3 倍轴的局部熔融可能不是神经铁蛋白病样疾病的原因。数据支持这样一种假设,即遗传性神经铁蛋白病是由于铁蛋白功能的改变和物理稳定性的降低引起的,这与 C 末端序列引入的移码相关,并解释了该疾病的显性遗传。