Olsen Luke, Hassan Huzaifa, Keaton Sarah, Rohner Nicolas
Stowers Institute for Medical Research, Kansas City, MO 64110, USA.
Department of Molecular & Integrative Physiology, University of Kansas Medical Center, Kansas City, KS 66160, USA.
bioRxiv. 2023 Feb 5:2023.02.05.527207. doi: 10.1101/2023.02.05.527207.
Physical injury and tissue damage is prevalent throughout the animal kingdom, with the ability to quickly and efficiently regenerate providing a selective advantage. The skeletal muscle possesses a uniquely large regenerative capacity within most vertebrates, and has thus become an important model for investigating cellular processes underpinning tissue regeneration. Following damage, the skeletal muscle mounts a complex regenerative cascade centered around dedicated muscle stem cells termed satellite cells. In non-injured muscle, satellite cells remain in a quiescent state, expressing the canonical marker (Chen et al. 2020). However, following injury, satellite cells exit quiescence, enter the cell cycle to initiate proliferation, asymmetrically divide, and in many cases terminally differentiate into myoblasts, ultimately fusing with surrounding myoblasts and pre-existing muscle fibers to resolve the regenerative process (Chen et al. 2020).
身体损伤和组织损伤在动物界普遍存在,能够快速有效地再生具有选择优势。在大多数脊椎动物中,骨骼肌具有独特的强大再生能力,因此已成为研究组织再生基础细胞过程的重要模型。损伤后,骨骼肌会启动一个复杂的再生级联反应,该反应以称为卫星细胞的专用肌肉干细胞为中心。在未受伤的肌肉中,卫星细胞保持静止状态,表达典型标志物(Chen等人,2020年)。然而,损伤后,卫星细胞退出静止状态,进入细胞周期开始增殖,进行不对称分裂,并且在许多情况下终末分化为成肌细胞,最终与周围的成肌细胞和预先存在的肌纤维融合以完成再生过程(Chen等人,2020年)。