School of Physics, University of Sydney Nano Institute, The University of Sydney, Sydney, NSW, 2006, Australia.
Nanoscale. 2023 Mar 2;15(9):4219-4235. doi: 10.1039/d2nr06496k.
Metal halide perovskite materials demonstrate immense potential for photovoltaic and electronic applications. In particular, two-dimensional (2D) layered metal halide perovskites have advantages over their 3D counterparts in optoelectronic applications due to their outstanding stability, structural flexibility with a tunable bandgap, and electronic confinement effect. This review article first analyzes the crystallography of different 2D perovskite phases [the Ruddlesden-Popper (RP) phase, the Dion-Jacobson (DJ) phase, and the alternating cations in the interlayer space (ACI) phase] at the molecular level and compares their common electronic properties, such as out-of-plane conductivity, crucial to vertical devices. This paper then critically reviews the recent development of optoelectronic devices, namely solar cells, photodetectors and field effect transistors, based on layered 2D perovskite materials and points out their limitations and potential compared to their 3D counterparts. It also identifies the important application-specific future research directions for different optoelectronic devices providing a comprehensive view guiding new research directions in this field.
金属卤化物钙钛矿材料在光电和电子应用方面具有巨大的潜力。特别是,二维(2D)层状金属卤化物钙钛矿在光电应用方面优于其 3D 对应物,因为它们具有出色的稳定性、可调带隙的结构灵活性和电子限制效应。本文首先在分子水平上分析了不同二维钙钛矿相(Ruddlesden-Popper(RP)相、Dion-Jacobson(DJ)相和层间空间的交替阳离子(ACI)相)的晶体学,并比较了它们共同的电子特性,例如对垂直器件至关重要的面外电导率。然后,本文批判性地回顾了基于层状二维钙钛矿材料的光电设备的最新发展,即太阳能电池、光电探测器和场效应晶体管,并指出了与 3D 对应物相比它们的局限性和潜力。它还确定了不同光电设备的特定应用的未来研究方向,为该领域的新研究方向提供了全面的指导。