Suppr超能文献

通过机器学习进行的 DNA 甲基化和基因表达的综合分析鉴定出胃癌的诊断和预后生物标志物。

Integrative analysis of DNA methylation and gene expression through machine learning identifies stomach cancer diagnostic and prognostic biomarkers.

机构信息

Department of Genetics and Molecular Biology, Faculty of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran.

Department of Computer Engineering, Shahreza Campus, University of Isfahan, Isfahan, Iran.

出版信息

J Cell Mol Med. 2023 Mar;27(5):714-726. doi: 10.1111/jcmm.17693. Epub 2023 Feb 13.

Abstract

DNA methylation is an early event in tumorigenesis. Here, by integrative analysis of DNA methylation and gene expression and utilizing machine learning approaches, we introduced potential diagnostic and prognostic methylation signatures for stomach cancer. Differentially-methylated positions (DMPs) and differentially-expressed genes (DEGs) were identified using The Cancer Genome Atlas (TCGA) stomach adenocarcinoma (STAD) data. A total of 256 DMPs consisting of 140 and 116 hyper- and hypomethylated positions were identified between 443 tumour and 27 nontumour STAD samples. Gene expression analysis revealed a total of 2821 DEGs with 1247 upregulated and 1574 downregulated genes. By analysing the impact of cis and trans regulation of methylation on gene expression, a dominant negative correlation between methylation and expression was observed, while for trans regulation, in hypermethylated and hypomethylated genes, there was mainly a negative and positive correlation with gene expression, respectively. To find diagnostic biomarkers, we used 28 hypermethylated probes locating in the promoter of 27 downregulated genes. By implementing a feature selection approach, eight probes were selected and then used to build a support vector machine diagnostic model, which had an area under the curve of 0.99 and 0.97 in the training and validation (GSE30601 with 203 tumour and 94 nontumour samples) cohorts, respectively. Using 412 TCGA-STAD samples with both methylation and clinical data, we also identified four prognostic probes by implementing univariate and multivariate Cox regression analysis. In summary, our study introduced potential diagnostic and prognostic biomarkers for STAD, which demands further validation.

摘要

DNA 甲基化是肿瘤发生的早期事件。在这里,我们通过整合 DNA 甲基化和基因表达分析,并利用机器学习方法,为胃癌引入了潜在的诊断和预后甲基化特征。使用癌症基因组图谱(TCGA)胃腺癌(STAD)数据鉴定差异甲基化位置(DMP)和差异表达基因(DEG)。在 443 个肿瘤和 27 个非肿瘤 STAD 样本之间,共鉴定出 256 个 DMP,其中包括 140 个和 116 个超甲基化和低甲基化位置。基因表达分析共鉴定出 2821 个 DEG,其中 1247 个上调基因和 1574 个下调基因。通过分析甲基化对基因表达的顺式和反式调控的影响,观察到甲基化与表达之间存在明显的负相关,而对于反式调控,在超甲基化和低甲基化基因中,与基因表达主要呈负相关和正相关。为了寻找诊断生物标志物,我们使用了 28 个位于 27 个下调基因启动子的高甲基化探针。通过实施特征选择方法,选择了 8 个探针,然后用于构建支持向量机诊断模型,该模型在训练和验证(GSE30601,包含 203 个肿瘤和 94 个非肿瘤样本)队列中的曲线下面积分别为 0.99 和 0.97。使用具有甲基化和临床数据的 412 个 TCGA-STAD 样本,我们还通过实施单变量和多变量 Cox 回归分析鉴定了 4 个预后探针。总之,我们的研究为 STAD 引入了潜在的诊断和预后生物标志物,需要进一步验证。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/88a0/9983314/be2a71919ddd/JCMM-27-714-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验