Fal Kateryna, Berr Alexandre, Le Masson Marie, Faigenboim Adi, Pano Emeline, Ishkhneli Nickolay, Moyal Netta-Lee, Villette Claire, Tomkova Denisa, Chabouté Marie-Edith, Williams Leor Eshed, Carles Cristel C
Plant and Cell Physiology Lab, IRIG-DBSCI-LPCV, CEA, Grenoble Alpes University - CNRS - INRAE - CEA, 17 rue des Martyrs, bât. C2, 38054, Grenoble Cedex 9, France.
Institut de Biologie Moléculaire des Plantes du CNRS, Université de Strasbourg, 12 rue du Général Zimmer, 67084, Strasbourg Cedex, France.
New Phytol. 2023 May;238(3):1085-1100. doi: 10.1111/nph.18666. Epub 2023 Feb 13.
Chromatin is a dynamic platform within which gene expression is controlled by epigenetic modifications, notably targeting amino acid residues of histone H3. Among them is lysine 27 of H3 (H3K27), the trimethylation of which by the Polycomb Repressive Complex 2 (PRC2) is instrumental in regulating spatiotemporal patterns of key developmental genes. H3K27 is also subjected to acetylation and is found at sites of active transcription. Most information on the function of histone residues and their associated modifications in plants was obtained from studies of loss-of-function mutants for the complexes that modify them. To decrypt the genuine function of H3K27, we expressed a non-modifiable variant of H3 at residue K27 (H3.3 ) in Arabidopsis, and developed a multi-scale approach combining in-depth phenotypical and cytological analyses, with transcriptomics and metabolomics. We uncovered that the H3.3 variant causes severe developmental defects, part of them are reminiscent of PRC2 mutants, part of them are new. They include early flowering, increased callus formation and short stems with thicker xylem cell layer. This latest phenotype correlates with mis-regulation of phenylpropanoid biosynthesis. Overall, our results reveal novel roles of H3K27 in plant cell fates and metabolic pathways, and highlight an epigenetic control point for elongation and lignin composition of the stem.
染色质是一个动态平台,基因表达在其中受表观遗传修饰控制,特别是针对组蛋白H3的氨基酸残基。其中包括H3的赖氨酸27(H3K27),多梳抑制复合物2(PRC2)对其进行的三甲基化在调节关键发育基因的时空模式中起重要作用。H3K27也会发生乙酰化,并存在于活跃转录位点。关于植物中组蛋白残基及其相关修饰功能的大多数信息来自对修饰它们的复合物功能缺失突变体的研究。为了解开H3K27的真正功能,我们在拟南芥中表达了K27残基处不可修饰的H3变体(H3.3),并开发了一种多尺度方法,将深入的表型和细胞学分析与转录组学和代谢组学相结合。我们发现H3.3变体导致严重的发育缺陷,其中一部分让人联想到PRC2突变体,一部分是新的缺陷。它们包括早花、愈伤组织形成增加以及茎短且木质部细胞层更厚。这一最新表型与苯丙烷生物合成的调控异常有关。总体而言,我们的结果揭示了H3K27在植物细胞命运和代谢途径中的新作用,并突出了茎伸长和木质素组成的一个表观遗传控制点。