Suppr超能文献

基于F-FDG PET/CT的影像组学联合剂量组学及剂量体积直方图对头颈部癌的预后价值

Prognostic value of F-FDG PET/CT-based radiomics combining dosiomics and dose volume histogram for head and neck cancer.

作者信息

Wang Bingzhen, Liu Jinghua, Zhang Xiaolei, Wang Zhongxiao, Cao Zhendong, Lu Lijun, Lv Wenbing, Wang Aihui, Li Shuyan, Wu Xiaotian, Dong Xianling

机构信息

Department of Biomedical Engineering, Chengde Medical University, Chengde, Hebei, China.

Department of Nursing, Chengde Central Hospital, Chengde, Hebei, China.

出版信息

EJNMMI Res. 2023 Feb 13;13(1):14. doi: 10.1186/s13550-023-00959-6.

Abstract

OBJECTIVES

By comparing the prognostic performance of F-FDG PET/CT-based radiomics combining dose features [Includes Dosiomics feature and the dose volume histogram (DVH) features] with that of conventional radiomics in head and neck cancer (HNC), multidimensional prognostic models were constructed to investigate the overall survival (OS) in HNC.

MATERIALS AND METHODS

A total of 220 cases from four centres based on the Cancer Imaging Archive public dataset were used in this study, 2260 radiomics features and 1116 dosiomics features and 8 DVH features were extracted for each case, and classified into seven different models of PET, CT, Dose, PET+CT, PET+Dose, CT+Dose and PET+CT+Dose. Features were selected by univariate Cox and Spearman correlation coefficients, and the selected features were brought into the least absolute shrinkage and selection operator (LASSO)-Cox model. A nomogram was constructed to visually analyse the prognostic impact of the incorporated dose features. C-index and Kaplan-Meier curves (log-rank analysis) were used to evaluate and compare these models.

RESULTS

The cases from the four centres were divided into three different training and validation sets according to the hospitals. The PET+CT+Dose model had C-indexes of 0.873 (95% CI 0.812-0.934), 0.759 (95% CI 0.663-0.855) and 0.835 (95% CI 0.745-0.925) in the validation set respectively, outperforming the rest models overall. The PET+CT+Dose model did well in classifying patients into high- and low-risk groups under all three different sets of experiments (p < 0.05).

CONCLUSION

Multidimensional model of radiomics features combining dosiomics features and DVH features showed high prognostic performance for predicting OS in patients with HNC.

摘要

目的

通过比较基于F-FDG PET/CT的联合剂量特征(包括剂量组学特征和剂量体积直方图(DVH)特征)的放射组学与传统放射组学在头颈癌(HNC)中的预后性能,构建多维预后模型以研究HNC患者的总生存期(OS)。

材料与方法

本研究使用了基于癌症影像存档公共数据集的来自四个中心的220例病例,为每个病例提取了2260个放射组学特征、1116个剂量组学特征和8个DVH特征,并将其分为PET、CT、剂量、PET+CT、PET+剂量、CT+剂量和PET+CT+剂量七种不同模型。通过单变量Cox和Spearman相关系数选择特征,并将所选特征纳入最小绝对收缩和选择算子(LASSO)-Cox模型。构建列线图以直观分析纳入的剂量特征对预后的影响。使用C指数和Kaplan-Meier曲线(对数秩分析)来评估和比较这些模型。

结果

根据医院将来自四个中心的病例分为三个不同的训练集和验证集。PET+CT+剂量模型在验证集中的C指数分别为0.873(95%CI 0.812-0.934)、0.759(95%CI 0.663-0.855)和0.835(95%CI 0.745-0.925),总体上优于其他模型。在所有三组不同实验中,PET+CT+剂量模型在将患者分为高风险和低风险组方面表现良好(p<0.05)。

结论

结合剂量组学特征和DVH特征的放射组学特征多维模型在预测HNC患者的OS方面显示出较高的预后性能。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c4d7/9925656/2342eae4c2fc/13550_2023_959_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验