Suppr超能文献

改进个体差异的层次模型:戈德堡“本末倒置”方法的扩展

Improving hierarchical models of individual differences: An extension of Goldberg's bass-ackward method.

作者信息

Forbes Miriam K

机构信息

Centre for Emotional Health, Macquarie University.

出版信息

Psychol Methods. 2024 Dec;29(6):1062-1073. doi: 10.1037/met0000546. Epub 2023 Feb 13.

Abstract

Goldberg's (2006) bass-ackward approach to elucidating the hierarchical structure of individual differences data has been used widely to improve our understanding of the relationships among constructs of varying levels of granularity. The traditional approach has been to extract a single component or factor on the first level of the hierarchy, two on the second level, and so on, treating the correlations between adjoining levels akin to path coefficients in a hierarchical structure. This article proposes three modifications to the traditional approach with a particular focus on examining associations among levels of the hierarchy: (a) identify and remove redundant elements that perpetuate through multiple levels of the hierarchy; (b) (optionally) identify and remove artefactual elements; and (c) plot the strongest correlations among the remaining elements to identify their hierarchical associations. Together these steps can offer a simpler and more complete picture of the underlying hierarchical structure among a set of observed variables. The rationale for each step is described, illustrated in a hypothetical example and three basic simulations, and then applied in real data. The results are compared with the traditional bass-ackward approach together with agglomerative hierarchical cluster analysis, and a basic tutorial with code is provided to apply the extended bass-ackward approach in other data. (PsycInfo Database Record (c) 2024 APA, all rights reserved).

摘要

戈德堡(2006年)提出的用于阐明个体差异数据层次结构的反向方法已被广泛应用,以增进我们对不同粒度水平构念之间关系的理解。传统方法是在层次结构的第一级提取一个单一成分或因素,在第二级提取两个,依此类推,将相邻级别之间的相关性视为层次结构中的路径系数。本文对传统方法提出了三点改进,特别关注层次结构各级别之间关联的考察:(a)识别并去除在层次结构的多个级别中持续存在的冗余元素;(b)(可选)识别并去除人为因素造成的元素;(c)绘制剩余元素之间最强的相关性,以确定它们的层次关联。这些步骤共同作用,可以为一组观测变量之间潜在的层次结构提供更简单、更完整的图景。文章描述了每个步骤的基本原理,通过一个假设示例和三个基本模拟进行说明,然后应用于实际数据。将结果与传统的反向方法以及凝聚层次聚类分析进行了比较,并提供了一个带有代码的基础教程,以便在其他数据中应用扩展后的反向方法。(《心理学文摘数据库记录》(c)2024美国心理学会,保留所有权利)

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验