Suppr超能文献

个体间差异的纵向数据综合模型框架。

A comprehensive model framework for between-individual differences in longitudinal data.

机构信息

Department Psychometrics and Statistics, University of Groningen.

出版信息

Psychol Methods. 2024 Aug;29(4):748-766. doi: 10.1037/met0000585. Epub 2023 Jun 12.

Abstract

Across different fields of research, the similarities and differences between various longitudinal models are not always eminently clear due to differences in data structure, application area, and terminology. Here we propose a comprehensive model framework that will allow simple comparisons between longitudinal models, to ease their empirical application and interpretation. At the within-individual level, our model framework accounts for various attributes of longitudinal data, such as growth and decline, cyclical trends, and the dynamic interplay between variables over time. At the between-individual level, our framework contains continuous and categorical latent variables to account for between-individual differences. This framework encompasses several well-known longitudinal models, including multilevel regression models, growth curve models, growth mixture models, vector-autoregressive models, and multilevel vector-autoregressive models. The general model framework is specified and its key characteristics are illustrated using famous longitudinal models as concrete examples. Various longitudinal models are reviewed and it is shown that all these models can be united into our comprehensive model framework. Extensions to the model framework are discussed. Recommendations for selecting and specifying longitudinal models are made for empirical researchers who aim to account for between-individual differences. (PsycInfo Database Record (c) 2024 APA, all rights reserved).

摘要

由于数据结构、应用领域和术语的差异,不同研究领域的各种纵向模型之间的相似之处和不同之处并不总是非常明显。在这里,我们提出了一个综合的模型框架,该框架将允许对纵向模型进行简单的比较,从而简化它们的实证应用和解释。在个体内水平上,我们的模型框架考虑了纵向数据的各种属性,例如增长和下降、周期性趋势以及变量随时间的动态相互作用。在个体间水平上,我们的框架包含连续和分类潜在变量,以解释个体间的差异。该框架包含了几个著名的纵向模型,包括多层次回归模型、增长曲线模型、增长混合模型、向量自回归模型和多层次向量自回归模型。使用著名的纵向模型作为具体示例,指定了通用模型框架,并说明了其关键特征。对各种纵向模型进行了回顾,表明所有这些模型都可以统一到我们的综合模型框架中。讨论了模型框架的扩展。为旨在解释个体间差异的实证研究人员提供了选择和指定纵向模型的建议。(PsycInfo 数据库记录(c)2024 APA,保留所有权利)。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验