Suppr超能文献

Hippo 信号通路和组蛋白甲基化通过不同的转录途径控制心肌细胞周期重新进入。

Hippo signaling and histone methylation control cardiomyocyte cell cycle re-entry through distinct transcriptional pathways.

机构信息

Cardiology Division, Department of Medicine, University of Washington, Seattle, Washington, United States of America.

Center for Cardiovascular Biology, University of Washington, Seattle, Washington, United States of America.

出版信息

PLoS One. 2023 Feb 13;18(2):e0281610. doi: 10.1371/journal.pone.0281610. eCollection 2023.

Abstract

AIMS

Accumulating data demonstrates that new adult cardiomyocytes (CMs) are generated throughout life from pre-existing CMs, although the absolute magnitude of CM self-renewal is very low. Modifying epigenetic histone modifications or activating the Hippo-Yap pathway have been shown to promote adult CM cycling and proliferation. Whether these interventions work through common pathways or act independently is unknown. For the first time we have determined whether lysine demethylase 4D (KDM4D)-mediated CM-specific H3K9 demethylation and Hippo pathways inhibition have additive or redundant roles in promoting CM cell cycle re-entry.

METHODS AND RESULTS

We found that activating Yap1 in cultured neonatal rat ventricular myocytes (NRVM) through overexpressing Hippo pathway inhibitor, miR-199, preferentially increased S-phase CMs, while H3K9me3 demethylase KDM4D preferentially increased G2/M markers in CMs. Together KDM4D and miR-199 further increased total cell number of NRVMs in culture. Inhibition of Hippo signaling via knock-down of Salvador Family WW Domain Containing Protein 1 (Sav1) also led to S-phase reactivation and additional cell cycle re-entry was seen when combined with KDM4D overexpression. Inducible activating KDM4D (iKDM4D) in adult transgenic mice together with shRNA mediated knock-down of Sav1 (iKDM4D+Sav1-sh) resulted in a significant increase in cycling CMs compared to either intervention alone. KDM4D preferentially induced expression of genes regulating late (G2/M) phases of the cell cycle, while miR-199 and si-Sav1 preferentially up-regulated genes involved in G1/S phase. KDM4D upregulated E2F1 and FoxM1 expression, whereas miR-199 and si-Sav1 induced Myc. Using transgenic mice over-expressing KDM4D together with Myc, we demonstrated that KDM4D/Myc significantly increased CM cell cycling but did not affect cardiac function.

CONCLUSIONS

KDM4D effects on CM cell cycle activity are additive with the Hippo-Yap1 pathway and appear to preferentially regulate different cell cycle regulators. This may have important implications for strategies that target cardiac regeneration in treating heart disease.

摘要

目的

越来越多的数据表明,新的成年心肌细胞(CM)在整个生命周期中都来自于预先存在的 CM,尽管 CM 自我更新的绝对数量非常低。已证明修饰表观遗传组蛋白修饰或激活 Hippo-Yap 通路可促进成年 CM 的周期循环和增殖。这些干预措施是否通过共同途径起作用或独立起作用尚不清楚。我们首次确定了赖氨酸去甲基酶 4D(KDM4D)介导的 CM 特异性 H3K9 去甲基化和 Hippo 通路抑制在促进 CM 细胞周期再进入中是否具有加性或冗余作用。

方法和结果

我们发现,通过过表达 Hippo 通路抑制剂 miR-199 使培养的新生大鼠心室肌细胞(NRVM)中的 Yap1 激活,优先增加 S 期 CM,而 H3K9me3 去甲基酶 KDM4D 优先增加 CM 中的 G2/M 标志物。KDM4D 和 miR-199 一起进一步增加了培养中的 NRVM 的总细胞数。通过敲低 Salvador 家族 WW 结构域包含蛋白 1(Sav1)抑制 Hippo 信号也导致 S 期再激活,当与 KDM4D 过表达结合时,观察到额外的细胞周期再进入。在成年转基因小鼠中诱导激活的 KDM4D(iKDM4D)与 shRNA 介导的 Sav1 敲低(iKDM4D+Sav1-sh)一起导致与任一干预单独相比,循环 CM 数量显著增加。KDM4D 优先诱导调节细胞周期晚期(G2/M)阶段的基因表达,而 miR-199 和 si-Sav1 优先上调参与 G1/S 期的基因。KDM4D 上调 E2F1 和 FoxM1 的表达,而 miR-199 和 si-Sav1 诱导 Myc。使用过表达 KDM4D 的转基因小鼠与 Myc 一起,我们证明 KDM4D/Myc 显著增加 CM 细胞周期活性,但不影响心脏功能。

结论

KDM4D 对 CM 细胞周期活性的影响与 Hippo-Yap1 通路相加,并且似乎优先调节不同的细胞周期调节剂。这对于靶向心脏病治疗中的心脏再生的策略可能具有重要意义。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6e60/9925018/e4af42b8ead5/pone.0281610.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验