Suppr超能文献

U-SPDNet:一种基于对称正定(SPD)流形学习的视觉分类神经网络。

U-SPDNet: An SPD manifold learning-based neural network for visual classification.

作者信息

Wang Rui, Wu Xiao-Jun, Xu Tianyang, Hu Cong, Kittler Josef

机构信息

School of Artificial Intelligence and Computer Science, Jiangnan University, Wuxi 214122, China; Jiangsu Provincial Engineering Laboratory of Pattern Recognition and Computational Intelligence, Jiangnan University, Wuxi 214122, China.

School of Artificial Intelligence and Computer Science, Jiangnan University, Wuxi 214122, China; Jiangsu Provincial Engineering Laboratory of Pattern Recognition and Computational Intelligence, Jiangnan University, Wuxi 214122, China.

出版信息

Neural Netw. 2023 Apr;161:382-396. doi: 10.1016/j.neunet.2022.11.030. Epub 2022 Dec 14.

Abstract

With the development of neural networking techniques, several architectures for symmetric positive definite (SPD) matrix learning have recently been put forward in the computer vision and pattern recognition (CV&PR) community for mining fine-grained geometric features. However, the degradation of structural information during multi-stage feature transformation limits their capacity. To cope with this issue, this paper develops a U-shaped neural network on the SPD manifolds (U-SPDNet) for visual classification. The designed U-SPDNet contains two subsystems, one of which is a shrinking path (encoder) making up of a prevailing SPD manifold neural network (SPDNet (Huang and Van Gool, 2017)) for capturing compact representations from the input data. Another is a constructed symmetric expanding path (decoder) to upsample the encoded features, trained by a reconstruction error term. With this design, the degradation problem will be gradually alleviated during training. To enhance the representational capacity of U-SPDNet, we also append skip connections from encoder to decoder, realized by manifold-valued geometric operations, namely Riemannian barycenter and Riemannian optimization. On the MDSD, Virus, FPHA, and UAV-Human datasets, the accuracy achieved by our method is respectively 6.92%, 8.67%, 1.57%, and 1.08% higher than SPDNet, certifying its effectiveness.

摘要

随着神经网络技术的发展,计算机视觉与模式识别(CV&PR)领域最近提出了几种用于对称正定(SPD)矩阵学习的架构,以挖掘细粒度几何特征。然而,多阶段特征转换过程中结构信息的退化限制了它们的能力。为了解决这个问题,本文开发了一种基于SPD流形的U型神经网络(U-SPDNet)用于视觉分类。所设计的U-SPDNet包含两个子系统,其中一个是收缩路径(编码器),由一个主流的SPD流形神经网络(SPDNet(Huang和Van Gool,2017))组成,用于从输入数据中捕获紧凑表示。另一个是构建的对称扩展路径(解码器),用于对编码特征进行上采样,由重建误差项进行训练。通过这种设计,训练过程中的退化问题将逐渐得到缓解。为了增强U-SPDNet的表示能力,我们还通过流形值几何运算,即黎曼质心和黎曼优化,从编码器到解码器添加了跳跃连接。在MDSD、Virus、FPHA和UAV-Human数据集上,我们的方法所达到 的准确率分别比SPDNet高6.92%、8.67%、1.57%和1.08%,证明了其有效性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验