Blagus Rok
Institute for Biostatistics and Medical Informatics, Medical Faculty, University of Ljubljana, Ljubljana, Slovenia.
Faculty of Sports, University of Ljubljana, Ljubljana, Slovenia.
Biom J. 2023 Apr;65(4):e2200133. doi: 10.1002/bimj.202200133. Epub 2023 Feb 13.
We study bias-reduced estimators of exponentially transformed parameters in general linear models (GLMs) and show how they can be used to obtain bias-reduced conditional (or unconditional) odds ratios in matched case-control studies. Two options are considered and compared: the explicit approach and the implicit approach. The implicit approach is based on the modified score function where bias-reduced estimates are obtained by using iterative procedures to solve the modified score equations. The explicit approach is shown to be a one-step approximation of this iterative procedure. To apply these approaches for the conditional analysis of matched case-control studies, with potentially unmatched confounding and with several exposures, we utilize the relation between the conditional likelihood and the likelihood of the unconditional logit binomial GLM for matched pairs and Cox partial likelihood for matched sets with appropriately setup data. The properties of the estimators are evaluated by using a large Monte Carlo simulation study and an illustration of a real dataset is shown. Researchers reporting the results on the exponentiated scale should use bias-reduced estimators since otherwise the effects can be under or overestimated, where the magnitude of the bias is especially large in studies with smaller sample sizes.
我们研究了广义线性模型(GLMs)中指数变换参数的偏差减少估计量,并展示了如何在匹配病例对照研究中使用它们来获得偏差减少的条件(或无条件)优势比。考虑并比较了两种方法:显式方法和隐式方法。隐式方法基于修正得分函数,通过使用迭代程序求解修正得分方程来获得偏差减少估计量。显式方法被证明是该迭代程序的一步近似。为了将这些方法应用于匹配病例对照研究的条件分析,考虑潜在的不匹配混杂因素和多种暴露因素,我们利用条件似然与无条件logit二项式GLM的似然之间的关系,对匹配对使用匹配对的无条件logit二项式GLM,对匹配集使用Cox偏似然,并进行适当的数据设置。通过大型蒙特卡罗模拟研究评估估计量的性质,并展示了一个真实数据集的示例。报告指数尺度结果的研究人员应使用偏差减少估计量,否则可能会低估或高估效应,在样本量较小的研究中偏差的幅度尤其大。