Suppr超能文献

将纺织废料转化为高附加值化学品:一种集成生物精炼工艺。

Converting textile waste into value-added chemicals: An integrated bio-refinery process.

作者信息

Cho Eun Jin, Lee Yoon Gyo, Song Younho, Kim Ha Yeon, Nguyen Dinh-Truong, Bae Hyeun-Jong

机构信息

Bio-Energy Research Center, Chonnam National University, Gwangju, 500-757, Republic of Korea.

Department of Bioenergy Science and Technology, Chonnam National University, Gwangju, 500-757, Republic of Korea.

出版信息

Environ Sci Ecotechnol. 2023 Jan 6;15:100238. doi: 10.1016/j.ese.2023.100238. eCollection 2023 Jul.

Abstract

The rate of textile waste generation worldwide has increased dramatically due to a rise in clothing consumption and production. Here, conversion of cotton-based, colored cotton-based, and blended cotton-polyethylene terephthalate (PET) textile waste materials into value-added chemicals (bioethanol, sorbitol, lactic acid, terephthalic acid (TPA), and ethylene glycol (EG)) via enzymatic hydrolysis and fermentation was investigated. In order to enhance the efficiency of enzymatic saccharification, effective pretreatment methods for each type of textile waste were developed, respectively. A high glucose yield of 99.1% was obtained from white cotton-based textile waste after NaOH pretreatment. Furthermore, the digestibility of the cellulose in colored cotton-based textile wastes was increased 1.38-1.75 times because of the removal of dye materials by HPAC-NaOH pretreatment. The blended cotton-PET samples showed good hydrolysis efficiency following PET removal via NaOH-ethanol pretreatment, with a glucose yield of 92.49%. The sugar content produced via enzymatic hydrolysis was then converted into key platform chemicals (bioethanol, sorbitol, and lactic acid) via fermentation or hydrogenation. The maximum ethanol yield was achieved with the white T-shirt sample (537 mL/kg substrate), which was 3.2, 2.1, and 2.6 times higher than those obtained with rice straw, pine wood, and oak wood, respectively. Glucose was selectively converted into sorbitol and LA at a yield of 70% and 83.67%, respectively. TPA and EG were produced from blended cotton-PET via NaOH-ethanol pretreatment. The integrated biorefinery process proposed here demonstrates significant potential for valorization of textile waste.

摘要

由于服装消费和生产的增加,全球纺织废料的产生率急剧上升。在此,研究了通过酶水解和发酵将棉基、彩色棉基和棉-聚对苯二甲酸乙二酯(PET)混合纺织废料转化为增值化学品(生物乙醇、山梨醇、乳酸、对苯二甲酸(TPA)和乙二醇(EG))。为了提高酶促糖化效率,分别开发了针对每种纺织废料的有效预处理方法。经过NaOH预处理后,白色棉基纺织废料获得了99.1%的高葡萄糖产率。此外,由于HPAC-NaOH预处理去除了染料物质,彩色棉基纺织废料中纤维素的消化率提高了1.38-1.75倍。通过NaOH-乙醇预处理去除PET后,棉-PET混合样品显示出良好的水解效率,葡萄糖产率为92.49%。然后,通过酶水解产生的糖含量通过发酵或氢化转化为关键平台化学品(生物乙醇、山梨醇和乳酸)。白色T恤样品的乙醇产量最高(537 mL/kg底物),分别比稻草、松木和橡木的乙醇产量高3.2倍、2.1倍和2.6倍。葡萄糖分别以70%和83.67%的产率选择性转化为山梨醇和LA。通过NaOH-乙醇预处理从棉-PET混合物中生产TPA和EG。本文提出的综合生物炼制工艺显示了纺织废料增值的巨大潜力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9e3a/9918418/b1b55f1e6700/ga1.jpg

相似文献

1
Converting textile waste into value-added chemicals: An integrated bio-refinery process.
Environ Sci Ecotechnol. 2023 Jan 6;15:100238. doi: 10.1016/j.ese.2023.100238. eCollection 2023 Jul.
4
Evaluation and Optimization of Organic Acid Pretreatment of Cotton Gin Waste for Enzymatic Hydrolysis and Bioethanol Production.
Appl Biochem Biotechnol. 2018 Dec;186(4):1047-1060. doi: 10.1007/s12010-018-2790-7. Epub 2018 Jun 2.
5
Ethanol production from cotton-based waste textiles.
Bioresour Technol. 2009 Jan;100(2):1007-10. doi: 10.1016/j.biortech.2008.07.020. Epub 2008 Aug 23.
7
Highly Selective Enzymatic Recovery of Building Blocks from Wool-Cotton-Polyester Textile Waste Blends.
Polymers (Basel). 2018 Oct 7;10(10):1107. doi: 10.3390/polym10101107.
8
Valorization of Pineapple Leaves Waste for the Production of Bioethanol.
Bioengineering (Basel). 2022 Oct 15;9(10):557. doi: 10.3390/bioengineering9100557.
9
Optimizing bioconversion processes of rice husk into value-added products: D-psicose, bioethanol, and lactic acid.
Bioresour Technol. 2024 Mar;395:130363. doi: 10.1016/j.biortech.2024.130363. Epub 2024 Jan 20.

引用本文的文献

2
Chemical Valorization of Textile Waste: Advancing Sustainable Recycling for a Circular Economy.
ACS Omega. 2025 Mar 19;10(12):11697-11722. doi: 10.1021/acsomega.4c10616. eCollection 2025 Apr 1.
4
Open-loop recycling of end-of-life textiles as geopolymer fibre reinforcement.
Waste Manag Res. 2024 Sep;42(9):823-831. doi: 10.1177/0734242X241242708. Epub 2024 Apr 5.
5
Cellulase production under solid-state fermentation by sp. IN5: Parameter optimization and application.
Heliyon. 2024 Feb 22;10(5):e26601. doi: 10.1016/j.heliyon.2024.e26601. eCollection 2024 Mar 15.
6
Recent Advances on Porous Siliceous Materials Derived from Waste.
Materials (Basel). 2023 Aug 11;16(16):5578. doi: 10.3390/ma16165578.

本文引用的文献

1
Abatement of microfibre pollution and detoxification of textile dye - Indigo by engineered plant enzymes.
Plant Biotechnol J. 2023 Feb;21(2):302-316. doi: 10.1111/pbi.13942. Epub 2022 Oct 27.
2
Nanocellulose from various biomass wastes: Its preparation and potential usages towards the high value-added products.
Environ Sci Ecotechnol. 2020 Dec 31;5:100077. doi: 10.1016/j.ese.2020.100077. eCollection 2021 Jan.
3
Microbial production of lactic acid from food waste: Latest advances, limits, and perspectives.
Bioresour Technol. 2022 Feb;345:126052. doi: 10.1016/j.biortech.2021.126052. Epub 2021 Sep 27.
4
Consequences of COVID-19 pandemic on solid waste management: Scenarios pertaining to developing countries.
Remediation (N Y). 2021 Fall;31(4):111-121. doi: 10.1002/rem.21692. Epub 2021 Jul 12.
5
Novel ethanol production using biomass preprocessing to increase ethanol yield and reduce overall costs.
Biotechnol Biofuels. 2021 Jan 7;14(1):9. doi: 10.1186/s13068-020-01839-0.
7
An Integrated Approach to Optimizing Cellulose Mercerization.
Polymers (Basel). 2020 Jul 14;12(7):1559. doi: 10.3390/polym12071559.
8
An engineered PET depolymerase to break down and recycle plastic bottles.
Nature. 2020 Apr;580(7802):216-219. doi: 10.1038/s41586-020-2149-4. Epub 2020 Apr 8.
9
Bioconversion of biomass waste into high value chemicals.
Bioresour Technol. 2020 Feb;298:122386. doi: 10.1016/j.biortech.2019.122386. Epub 2019 Nov 9.
10
The contribution of washing processes of synthetic clothes to microplastic pollution.
Sci Rep. 2019 Apr 29;9(1):6633. doi: 10.1038/s41598-019-43023-x.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验