Suppr超能文献

逆羟醛反应促使磷酸转移酶系统进化以利用一种稀有糖。

A Retro-Aldol Reaction Prompted the Evolvability of a Phosphotransferase System for the Utilization of a Rare Sugar.

作者信息

Joo Yunhye, Sung Jae-Yoon, Shin Sun-Mi, Park Sun Jun, Kim Kyoung Su, Park Ki Duk, Kim Seong-Bo, Lee Dong-Woo

机构信息

Department of Biotechnology, Yonsei University, Seoul, Republic of Korea.

School of Applied Biosciences, Kyungpook National University, Daegu, Republic of Korea.

出版信息

Microbiol Spectr. 2023 Feb 14;11(2):e0366022. doi: 10.1128/spectrum.03660-22.

Abstract

The evolution of the bacterial phosphotransferase system (PTS) linked to glycolysis is dependent on the availability of naturally occurring sugars. Although bacteria exhibit sugar specificities based on carbon catabolite repression, the acquisition and evolvability of the cellular sugar preference under conditions that are suboptimal for growth (e.g., environments rich in a rare sugar) are poorly understood. Here, we generated Escherichia coli mutants via a retro-aldol reaction to obtain progeny that can utilize the rare sugar d-tagatose. We detected a minimal set of adaptive mutations in the d-fructose-specific PTS to render E. coli capable of d-tagatose utilization. These E. coli mutant strains lost the tight regulation of both the d-fructose and -acetyl-galactosamine PTS following deletions in the binding site of the catabolite repressor/activator protein (Cra) upstream from the operon and in the gene, encoding the -acetylgalactosamine (GalNAc) repressor, respectively. Acquired d-tagatose catabolic pathways then underwent fine-tuned adaptation via an additional mutation in 1-phosphofructose kinase to adjust metabolic fluxes. We determined the evolutionary trajectory at the molecular level, providing insights into the mechanism by which enteric bacteria evolved a substrate preference for the rare sugar d-tagatose. Furthermore, the engineered E. coli mutant strain could serve as an high-throughput screening platform for engineering non-phosphosugar isomerases to produce rare sugars. Microorganisms generate energy through glycolysis, which might have preceded a rapid burst of evolution, including the evolution of cellular respiration in the primordial biosphere. However, little is known about the evolvability of cellular sugar preferences. Here, we generated Escherichia coli mutants via a retro-aldol reaction to obtain progeny that can utilize the rare sugar d-tagatose. Consequently, we identified mutational hot spots and determined the evolutionary trajectory at the molecular level. This provided insights into the mechanism by which enteric bacteria evolved substrate preferences for various sugars, accounting for the widespread occurrence of these taxa. Furthermore, the adaptive laboratory evolution-induced cellular chassis could serve as an high-throughput screening platform for engineering tailor-made non-phosphorylated sugar isomerases to produce low-calorigenic rare sugars showing antidiabetic, antihyperglycemic, and antitumor activities.

摘要

与糖酵解相关的细菌磷酸转移酶系统(PTS)的进化取决于天然存在的糖类的可用性。尽管细菌基于碳分解代谢物阻遏表现出糖特异性,但在不利于生长的条件下(例如富含稀有糖的环境)细胞对糖的偏好的获得和进化能力却知之甚少。在这里,我们通过逆羟醛反应产生了大肠杆菌突变体,以获得能够利用稀有糖D-塔格糖的后代。我们在D-果糖特异性PTS中检测到一组最小的适应性突变,使大肠杆菌能够利用D-塔格糖。这些大肠杆菌突变株在操纵子上游的分解代谢物阻遏物/激活蛋白(Cra)结合位点以及分别编码N-乙酰半乳糖胺(GalNAc)阻遏物的基因中缺失后,失去了对D-果糖和N-乙酰半乳糖胺PTS的严格调控。获得的D-塔格糖分解代谢途径随后通过1-磷酸果糖激酶中的额外突变进行了微调适应,以调节代谢通量。我们在分子水平上确定了进化轨迹,深入了解了肠道细菌进化出对稀有糖D-塔格糖的底物偏好的机制。此外,工程化的大肠杆菌突变株可以作为一个高通量筛选平台,用于工程化非磷酸糖异构酶以生产稀有糖。微生物通过糖酵解产生能量,这可能先于包括原始生物圈中细胞呼吸进化在内的快速进化爆发。然而,关于细胞对糖的偏好的进化能力知之甚少。在这里,我们通过逆羟醛反应产生了大肠杆菌突变体,以获得能够利用稀有糖D-塔格糖的后代。因此,我们确定了突变热点并在分子水平上确定了进化轨迹。这深入了解了肠道细菌进化出对各种糖的底物偏好的机制,解释了这些分类群的广泛存在。此外,适应性实验室进化诱导的细胞底盘可以作为一个高通量筛选平台,用于工程化定制的非磷酸化糖异构酶,以生产具有抗糖尿病、抗高血糖和抗肿瘤活性的低热值稀有糖。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c018/10101011/0886847c2723/spectrum.03660-22-f001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验