Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
Cancer Causes Control. 2023 Apr;34(4):361-370. doi: 10.1007/s10552-023-01670-6. Epub 2023 Feb 14.
Body mass index (BMI) and kidney cancer mortality are inconsistently associated in the scientific literature. To understand how study design affects results, we contrasted associations between pre-diagnosis BMI and mortality under different analytic scenarios in a large, population-based prospective cohort study.
Using data from the NIH-AARP Diet and Health Study (1995-2011), we constructed two cohorts: a "full at-risk" cohort with no kidney cancer history at baseline (n = 252,845) and an "incident cancer" subset who developed kidney cancer during follow-up (n = 1,652). Cox Proportional Hazards models estimated hazard ratios (HR) and 95% confidence intervals (CI) between pre-diagnosis BMI and mortality for different outcomes (all-cause and cancer-specific mortality), in the different cohorts (full at-risk vs. incident cancer cohort), and with different covariates (minimally vs. fully adjusted). For the incident cancer cohort, we also examined time to mortality using different timescales: from enrollment or diagnosis.
In the full at-risk study population, higher pre-diagnosis BMI was associated with greater cancer-specific mortality in fully adjusted multivariable models, particularly for obese participants [HR, (95% CI): 1.76, (1.38-2.25)]. This association was less pronounced in the incident cancer cohort [1.50, (1.09-2.07)]. BMI was not strongly associated with all-cause mortality in either cohort in fully adjusted models [full cohort: 1.03, (1.01, 1.06); incident cancer cohort: 1.20, (0.97, 1.48)].
Populations characterized by high adult BMI will likely experience greater population burdens of mortality from kidney cancer, partially because of higher rates of kidney cancer diagnosis. Questions regarding overall mortality burden and post-diagnosis cancer survivorship are distinct and require different study designs.
体质量指数(BMI)与肾癌死亡率在科学文献中的相关性不一致。为了了解研究设计如何影响结果,我们在一项大型基于人群的前瞻性队列研究中,对比了不同分析情况下,诊断前 BMI 与死亡率之间的关联。
利用 NIH-AARP 饮食与健康研究(1995-2011 年)的数据,我们构建了两个队列:一个是基线时无肾癌病史的“全风险”队列(n=252845),另一个是在随访期间发生肾癌的“新发癌症”亚组(n=1652)。Cox 比例风险模型估计了不同结局(全因死亡率和癌症特异性死亡率)、不同队列(全风险 vs. 新发癌症队列)和不同协变量(最小调整与完全调整)下,诊断前 BMI 与死亡率之间的危险比(HR)和 95%置信区间(CI)。对于新发癌症队列,我们还使用不同的时间尺度(从入组或诊断开始)来检查死亡率的时间。
在全风险研究人群中,完全调整多变量模型中,较高的诊断前 BMI 与较高的癌症特异性死亡率相关,尤其是肥胖参与者[HR,(95%CI):1.76,(1.38-2.25)]。在新发癌症队列中,这种关联不那么明显[1.50,(1.09-2.07)]。在完全调整模型中,BMI 与全因死亡率的相关性在两个队列中均不强烈[全队列:1.03,(1.01,1.06);新发癌症队列:1.20,(0.97,1.48)]。
BMI 较高的人群可能会经历更高的肾癌死亡率的人群负担,部分原因是肾癌诊断率较高。关于总体死亡率负担和诊断后癌症生存的问题是不同的,需要不同的研究设计。