Suppr超能文献

应用稳态模型评估-胰岛素抵抗预测美国成年人代谢综合征。

Prediction of Metabolic Syndrome in U.S. Adults Using Homeostasis Model Assessment-Insulin Resistance.

机构信息

Internal Medicine Service, Department of Medicine, Womack Army Medical Center, Fort Bragg, North Carolina, USA.

Department of Clinical Investigation, Womack Army Medical Center, Fort Bragg, North Carolina, USA.

出版信息

Metab Syndr Relat Disord. 2023 Apr;21(3):156-162. doi: 10.1089/met.2022.0097. Epub 2023 Feb 14.

Abstract

The prevalence of obesity among U.S. adults has risen steadily over recent decades. Consequently, interest in identification of those at greatest metabolic risk necessitates the periodic assessment of underlying population characteristics. Thus, the aim of this study is to assess the efficacy of using insulin resistance (IR) as a predictor of metabolic syndrome (MetS). We performed a serial, cross-sectional analysis of nationally representative data from the National Health and Nutrition Examination Survey (NHANES). Data included nonpregnant adults who participated in NHANES between 2011 and 2018. IR was estimated using the homeostasis model assessment (HOMA). Optimal HOMA-IR cut points for MetS were identified using receiver operating characteristic curve analysis. Data from 8897 participants representing 222 million individuals were analyzed. The estimated prevalence of MetS was 31.7% ( = 2958; 95% confidence interval 30.1-33.3). The optimal HOMA-IR to discriminate between individuals with and without MetS in the general population was 2.83 (sensitivity = 73.8%; specificity = 73.8%; area under the curve = 0.82). The HOMA-IR is a sensitive and specific method of screening for individuals with MetS. Prospective evaluation of this approach's efficacy in identifying those at risk for progression to MetS is warranted.

摘要

美国成年人的肥胖患病率在过去几十年中稳步上升。因此,为了确定那些处于最大代谢风险的人群,需要定期评估潜在的人群特征。因此,本研究旨在评估胰岛素抵抗(IR)作为代谢综合征(MetS)预测指标的效果。

我们对来自国家健康和营养检查调查(NHANES)的具有代表性的全国性数据进行了一系列的横断面分析。数据包括 2011 年至 2018 年期间参加 NHANES 的非孕妇成年人。使用稳态模型评估(HOMA)来估计 IR。使用受试者工作特征曲线分析确定 MetS 的最佳 HOMA-IR 切点。

分析了来自代表 2.22 亿人的 8897 名参与者的数据。MetS 的估计患病率为 31.7%(=2958;95%置信区间 30.1-33.3)。在一般人群中,最佳 HOMA-IR 可区分有和无 MetS 的个体,其值为 2.83(敏感性=73.8%;特异性=73.8%;曲线下面积=0.82)。

HOMA-IR 是筛查 MetS 个体的一种敏感且特异的方法。需要对这种方法在识别有进展为 MetS 风险的个体方面的有效性进行前瞻性评估。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验