Suppr超能文献

基于机器学习的头颈部危机器官自动勾画质量保证。

Machine Learning-Based Quality Assurance for Automatic Segmentation of Head-and-Neck Organs-at-Risk in Radiotherapy.

机构信息

Department of Radiation Oncology, 117922Hubei Cancer Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.

School of Optical and Electronic Information, 12443Huazhong University of Science and Technology, Wuhan, China.

出版信息

Technol Cancer Res Treat. 2023 Jan-Dec;22:15330338231157936. doi: 10.1177/15330338231157936.

Abstract

With the development of deep learning, more convolutional neural networks (CNNs) are being introduced in automatic segmentation to reduce oncologists' labor requirement. However, it is still challenging for oncologists to spend considerable time evaluating the quality of the contours generated by the CNNs. Besides, all the evaluation criteria, such as Dice Similarity Coefficient (DSC), need a gold standard to assess the quality of the contours. To address these problems, we propose an automatic quality assurance (QA) method using isotropic and anisotropic methods to automatically analyze contour quality without a gold standard. We used 196 individuals with 18 different head-and-neck organs-at-risk. The overall process has the following 4 main steps. (1) Use CNN segmentation network to generate a series of contours, then use these contours as organ masks to erode and dilate to generate inner/outer shells for each 2D slice. (2) Thirty-eight radiomics features were extracted from these 2 shells, using the inner/outer shells' radiomics features ratios and DSCs as the input for 12 machine learning models. (3) Using the DSC threshold adaptively classified the passing/un-passing slices. (4) Through 2 different threshold analysis methods quantitatively evaluated the un-passing slices and obtained a series of location information of poor contours. Parts 1-3 were isotropic experiments, and part 4 was the anisotropic method. From the isotropic experiments, almost all the predicted values were close to the labels. Through the anisotropic method, we obtained the contours' location information by assessing the thresholds of the peak-to-peak and area-to-area ratios. The proposed automatic segmentation QA method could predict the segmentation quality qualitatively. Moreover, the method can analyze the location information for un-passing slices.

摘要

随着深度学习的发展,越来越多的卷积神经网络(CNNs)被引入自动分割中,以减少肿瘤学家的工作量。然而,肿瘤学家仍然需要花费大量时间来评估 CNN 生成的轮廓质量。此外,所有的评估标准,如 Dice 相似系数(DSC),都需要一个金标准来评估轮廓的质量。为了解决这些问题,我们提出了一种自动质量保证(QA)方法,使用各向同性和各向异性方法来自动分析没有金标准的轮廓质量。我们使用了 196 名个体的 18 种不同的头颈部危及器官。整个过程有以下 4 个主要步骤。(1)使用 CNN 分割网络生成一系列轮廓,然后使用这些轮廓作为器官蒙版,对其进行侵蚀和膨胀,以生成每个 2D 切片的内/外壳。(2)从这些 2 个壳中提取 38 个放射组学特征,将内/外壳的放射组学特征比和 DSC 作为 12 个机器学习模型的输入。(3)使用 DSC 阈值自适应地对通过/未通过的切片进行分类。(4)通过 2 种不同的阈值分析方法对未通过的切片进行定量评估,并获得一系列轮廓质量差的位置信息。第 1-3 部分是各向同性实验,第 4 部分是各向异性方法。从各向同性实验中可以看出,几乎所有的预测值都接近标签。通过各向异性方法,我们通过评估峰峰值和面积面积比的阈值来获得轮廓的位置信息。所提出的自动分割 QA 方法可以定性地预测分割质量。此外,该方法可以分析未通过切片的位置信息。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3a22/9932790/b6074dadf50c/10.1177_15330338231157936-fig1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验