Wang Guotai, Li Wenqi, Aertsen Michael, Deprest Jan, Ourselin Sébastien, Vercauteren Tom
Wellcome / EPSRC Centre for Interventional and Surgical Sciences, University College London, London, UK.
School of Biomedical Engineering and Imaging Sciences, King's College London, London, UK.
Neurocomputing (Amst). 2019 Sep 3;335:34-45. doi: 10.1016/j.neucom.2019.01.103. Epub 2019 Feb 7.
Despite the state-of-the-art performance for medical image segmentation, deep convolutional neural networks (CNNs) have rarely provided uncertainty estimations regarding their segmentation outputs, e.g., model () and image-based () uncertainties. In this work, we analyze these different types of uncertainties for CNN-based 2D and 3D medical image segmentation tasks at both pixel level and structure level. We additionally propose a test-time augmentation-based uncertainty to analyze the effect of different transformations of the input image on the segmentation output. Test-time augmentation has been previously used to improve segmentation accuracy, yet not been formulated in a consistent mathematical framework. Hence, we also propose a theoretical formulation of test-time augmentation, where a distribution of the prediction is estimated by Monte Carlo simulation with prior distributions of parameters in an image acquisition model that involves image transformations and noise. We compare and combine our proposed uncertainty with model uncertainty. Experiments with segmentation of fetal brains and brain tumors from 2D and 3D Magnetic Resonance Images (MRI) showed that 1) the test-time augmentation-based uncertainty provides a better uncertainty estimation than calculating the test-time dropout-based model uncertainty alone and helps to reduce overconfident incorrect predictions, and 2) our test-time augmentation outperforms a single-prediction baseline and dropout-based multiple predictions.
尽管深度卷积神经网络(CNN)在医学图像分割方面表现出了先进水平,但它们很少提供关于其分割输出的不确定性估计,例如模型()和基于图像的()不确定性。在这项工作中,我们在像素级和结构级分析了基于CNN的二维和三维医学图像分割任务的这些不同类型的不确定性。我们还提出了一种基于测试时增强的不确定性,以分析输入图像的不同变换对分割输出的影响。测试时增强此前已被用于提高分割精度,但尚未在一致的数学框架中进行阐述。因此,我们还提出了测试时增强的理论公式,其中预测的分布通过蒙特卡罗模拟估计,该模拟使用了涉及图像变换和噪声的图像采集模型中参数的先验分布。我们将提出的不确定性与模型不确定性进行比较和结合。对二维和三维磁共振图像(MRI)中的胎儿大脑和脑肿瘤进行分割的实验表明:1)基于测试时增强的不确定性比单独计算基于测试时随机失活的模型不确定性能提供更好的不确定性估计,并有助于减少过度自信的错误预测;2)我们的测试时增强优于单预测基线和基于随机失活的多预测。