Moreira João P C, Heap John T, Alves Joana I, Domingues Lucília
CEB - Centre of Biological Engineering, University of Minho, 4710-057, Braga, Portugal.
LABBELS - Associate Laboratory, Braga/Guimarães, Portugal.
Biotechnol Biofuels Bioprod. 2023 Feb 14;16(1):24. doi: 10.1186/s13068-023-02259-6.
Developing new bioprocesses to produce chemicals and fuels with reduced production costs will greatly facilitate the replacement of fossil-based raw materials. In most fermentation bioprocesses, the feedstock usually represents the highest cost, which becomes the target for cost reduction. Additionally, the biorefinery concept advocates revenue growth from the production of several compounds using the same feedstock. Taken together, the production of bio commodities from low-cost gas streams containing CO, CO, and H, obtained from the gasification of any carbon-containing waste streams or off-gases from heavy industry (steel mills, processing plants, or refineries), embodies an opportunity for affordable and renewable chemical production. To achieve this, by studying non-model autotrophic acetogens, current limitations concerning low growth rates, toxicity by gas streams, and low productivity may be overcome. The Acetobacterium wieringae strain JM is a novel autotrophic acetogen that is capable of producing acetate and ethanol. It exhibits faster growth rates on various gaseous compounds, including carbon monoxide, compared to other Acetobacterium species, making it potentially useful for industrial applications. The species A. wieringae has not been genetically modified, therefore developing a genetic engineering method is important for expanding its product portfolio from gas fermentation and overall improving the characteristics of this acetogen for industrial demands.
This work reports the development and optimization of an electrotransformation protocol for A. wieringae strain JM, which can also be used in A. wieringae DSM 1911, and A. woodii DSM 1030. We also show the functionality of the thiamphenicol resistance marker, catP, and the functionality of the origins of replication pBP1, pCB102, pCD6, and pIM13 in all tested Acetobacterium strains, with transformation efficiencies of up to 2.0 × 10 CFU/μg. Key factors affecting electrotransformation efficiency include OD of cell harvesting, pH of resuspension buffer, the field strength of the electric pulse, and plasmid amount. Using this method, the acetone production operon from Clostridium acetobutylicum was efficiently introduced in all tested Acetobacterium spp., leading to non-native biochemical acetone production via plasmid-based expression.
A. wieringae can be electrotransformed at high efficiency using different plasmids with different replication origins. The electrotransformation procedure and tools reported here unlock the genetic and metabolic manipulation of the biotechnologically relevant A. wieringae strains. For the first time, non-native acetone production is shown in A. wieringae.
开发新的生物工艺以降低生产成本来生产化学品和燃料,将极大地促进对化石基原料的替代。在大多数发酵生物工艺中,原料通常占成本的大头,因此成为降低成本的目标。此外,生物炼制概念主张利用同一原料生产多种化合物来增加收益。总体而言,利用从任何含碳废物流或重工业(钢铁厂、加工厂或炼油厂)的废气气化中获得的含一氧化碳、二氧化碳和氢气的低成本气流生产生物商品,为经济实惠且可再生的化学品生产提供了契机。为实现这一目标,通过研究非模式自养产乙酸菌,当前在低生长速率、气流毒性和低生产力方面的限制或许能够被克服。维氏醋杆菌菌株JM是一种新型自养产乙酸菌,能够产生乙酸和乙醇。与其他醋杆菌属物种相比,它在包括一氧化碳在内的各种气态化合物上表现出更快的生长速率,使其在工业应用中具有潜在价值。维氏醋杆菌尚未进行基因改造,因此开发一种基因工程方法对于扩展其气体发酵产品组合以及全面改善这种产乙酸菌以满足工业需求的特性而言至关重要。
本研究报告了一种针对维氏醋杆菌菌株JM的电转化方案的开发与优化,该方案也可用于维氏醋杆菌DSM 1911和伍氏醋杆菌DSM 1030。我们还展示了甲砜霉素抗性标记catP的功能以及复制起点pBP1、pCB102、pCD6和pIM13在所有测试的醋杆菌菌株中的功能,转化效率高达2.0×10⁴CFU/μg。影响电转化效率的关键因素包括收获细胞时的OD值、重悬缓冲液的pH值、电脉冲的场强以及质粒用量。利用该方法,丙酮丁醇梭菌的丙酮生产操纵子被高效导入所有测试的醋杆菌属物种中,通过基于质粒的表达实现了非天然生化丙酮的生产。
维氏醋杆菌能够使用具有不同复制起点的不同质粒进行高效电转化。本文报道的电转化程序和工具开启了对具有生物技术相关性的维氏醋杆菌菌株的遗传和代谢操作。首次在维氏醋杆菌中展示了非天然丙酮的生产。