Montepietra Daniele, Tesei Giulio, Martins João M, Kunze Micha B A, Best Robert B, Lindorff-Larsen Kresten
Department of Physics, Computer Science and Mathematics, University of Modena and Reggio Emilia, Via Campi 213/A 41125 Modena, Italy.
Istituto Nanoscienze - CNR-NANO, Center S3, via G. Campi 213/A, 41125 Modena, Italy.
bioRxiv. 2023 Jan 28:2023.01.27.525885. doi: 10.1101/2023.01.27.525885.
Here, we introduce FRETpredict, a Python software program to predict FRET efficiencies from ensembles of protein conformations. FRETpredict uses an established Rotamer Library Approach to describe the FRET probes covalently bound to the protein. The software efficiently operates on large conformational ensembles such as those generated by molecular dynamics simulations to facilitate the validation or refinement of molecular models and the interpretation of experimental data. We demonstrate the performance and accuracy of the software for different types of systems: a relatively structured peptide (polyproline 11), an intrinsically disordered protein (ACTR), and three folded proteins (HiSiaP, SBD2, and MalE). We also describe a general approach to generate new rotamer libraries for FRET probes of interest. FRETpredict is open source (GPLv3) and is available at github.com/KULL-Centre/FRETpredict and as a Python PyPI package at pypi.org/project/FRETpredict.
在此,我们介绍FRETpredict,这是一个用于从蛋白质构象集合预测FRET效率的Python软件程序。FRETpredict采用既定的旋转异构体库方法来描述与蛋白质共价结合的FRET探针。该软件能高效地处理大型构象集合,如分子动力学模拟生成的那些集合,以促进分子模型的验证或优化以及实验数据的解释。我们展示了该软件在不同类型系统中的性能和准确性:一种相对结构化的肽(聚脯氨酸11)、一种内在无序的蛋白质(ACTR)以及三种折叠蛋白(HiSiaP、SBD2和MalE)。我们还描述了一种为感兴趣的FRET探针生成新旋转异构体库的通用方法。FRETpredict是开源的(GPLv3),可在github.com/KULL-Centre/FRETpredict获取,也可作为Python PyPI包在pypi.org/project/FRETpredict获取。