Suppr超能文献

皮质下脑区的功能连接:差异与相似性。

Functional connectivity of sub-cortical brain regions: disparities and similarities.

机构信息

Department of Radiologic Sciences, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia.

出版信息

Neuroreport. 2023 Mar 1;34(4):214-219. doi: 10.1097/WNR.0000000000001881. Epub 2023 Feb 6.

Abstract

Sub-cortical grey matter structures, such as the putamen, pallidum, caudate, thalamus, amygdala and hippocampus, play substantial roles in both simple and complex brain functions, including regulation of pleasure and emotions; control of movements; learning; decision-making; language development; and sensory, cognitive, social and other higher-order functions. Most of these regions act as information hubs for the nervous system, relaying and controlling the flow of information to various portions of the brain. To further understand the complex neurophysiological characteristics of sub-cortical areas, the aim of this study was to investigate the functional integrations of six sub-cortical areas to different major functional brain networks. One hundred ninety-eight healthy individuals were examined using resting-state functional MRI. The seeds identified in this study were six sub-cortical deep grey matter regions, namely putamen, pallidum, caudate, thalamus, amygdala and hippocampus. The analysis indicated that the link between the sub-cortical regions and some functional brain networks was similar in some aspects, but there were disparities in the mechanism underlying such a link and in the existence of functional connections between these regions and networks. Despite the substantial functional connectivity linkages between the sub-cortical regions, discrepancies were still noted. On the basis of the connections to the majority of the major brain networks, this study demonstrated the essential functional roles and involvements of the sub-cortical regions. This finding is consistent with an earlier report that revealed a substantial role of the sub-cortical regions in several brain functions.

摘要

皮质下灰质结构,如壳核、苍白球、尾状核、丘脑、杏仁核和海马体,在简单和复杂的大脑功能中都起着重要作用,包括调节快乐和情绪;运动控制;学习;决策;语言发展;以及感觉、认知、社交和其他高级功能。这些区域中的大多数作为神经系统的信息枢纽,传递和控制信息流向大脑的各个部分。为了进一步了解皮质下区域的复杂神经生理特征,本研究旨在研究六个皮质下区域与不同主要功能脑网络的功能整合。本研究对 198 名健康个体进行了静息态功能磁共振成像检查。本研究中确定的种子是六个皮质下深部灰质区域,即壳核、苍白球、尾状核、丘脑、杏仁核和海马体。分析表明,皮质下区域与一些功能脑网络之间的联系在某些方面相似,但这种联系的机制以及这些区域与网络之间的功能连接存在差异。尽管皮质下区域之间存在大量的功能连接,但仍存在差异。基于与大多数主要大脑网络的连接,本研究证明了皮质下区域的重要功能作用和参与。这一发现与早期的一项报告一致,该报告揭示了皮质下区域在几个大脑功能中的重要作用。

相似文献

1
Functional connectivity of sub-cortical brain regions: disparities and similarities.
Neuroreport. 2023 Mar 1;34(4):214-219. doi: 10.1097/WNR.0000000000001881. Epub 2023 Feb 6.
4
Thalamus and its functional connections with cortical regions contribute to complexity-dependent cognitive reasoning.
Neuroscience. 2024 Dec 6;562:125-134. doi: 10.1016/j.neuroscience.2024.10.034. Epub 2024 Oct 23.
5
Association between functional connectivity hubs and brain networks.
Cereb Cortex. 2011 Sep;21(9):2003-13. doi: 10.1093/cercor/bhq268. Epub 2011 Jan 31.
6
Functional topography of the thalamocortical system in human.
Brain Struct Funct. 2016 May;221(4):1971-84. doi: 10.1007/s00429-015-1018-7. Epub 2015 Apr 30.
7
Thalamo-cortical functional connectivity in schizophrenia and bipolar disorder.
Brain Imaging Behav. 2018 Jun;12(3):640-652. doi: 10.1007/s11682-017-9714-y.
9
Dissociable Disruptions in Thalamic and Hippocampal Resting-State Functional Connectivity in Youth with 22q11.2 Deletions.
J Neurosci. 2019 Feb 13;39(7):1301-1319. doi: 10.1523/JNEUROSCI.3470-17.2018. Epub 2018 Nov 26.

本文引用的文献

1
Resting state network connectivity is attenuated by fMRI acoustic noise.
Neuroimage. 2022 Feb 15;247:118791. doi: 10.1016/j.neuroimage.2021.118791. Epub 2021 Dec 14.
2
Mapping the subcortical connectivity of the human default mode network.
Neuroimage. 2021 Dec 15;245:118758. doi: 10.1016/j.neuroimage.2021.118758. Epub 2021 Nov 25.
3
Cortical and subcortical contributions to interference resolution and inhibition - An fMRI ALE meta-analysis.
Neurosci Biobehav Rev. 2021 Oct;129:245-260. doi: 10.1016/j.neubiorev.2021.07.021. Epub 2021 Jul 23.
4
Structural and resting state functional connectivity beyond the cortex.
Neuroimage. 2021 Oct 15;240:118379. doi: 10.1016/j.neuroimage.2021.118379. Epub 2021 Jul 10.
5
Effects of different smoothing on global and regional resting functional connectivity.
Neuroradiology. 2021 Jan;63(1):99-109. doi: 10.1007/s00234-020-02523-8. Epub 2020 Aug 25.
6
The Salience Network: A Neural System for Perceiving and Responding to Homeostatic Demands.
J Neurosci. 2019 Dec 11;39(50):9878-9882. doi: 10.1523/JNEUROSCI.1138-17.2019. Epub 2019 Nov 1.
7
The frontoparietal network: function, electrophysiology, and importance of individual precision mapping.
Dialogues Clin Neurosci. 2018 Jun;20(2):133-140. doi: 10.31887/DCNS.2018.20.2/smarek.
8
The role of the putamen in language: a meta-analytic connectivity modeling study.
Brain Struct Funct. 2017 Dec;222(9):3991-4004. doi: 10.1007/s00429-017-1450-y. Epub 2017 Jun 5.
9
The Association between Resting Functional Connectivity and Visual Creativity.
Sci Rep. 2016 May 3;6:25395. doi: 10.1038/srep25395.
10
Corticostriatal circuitry.
Dialogues Clin Neurosci. 2016 Mar;18(1):7-21. doi: 10.31887/DCNS.2016.18.1/shaber.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验