Suppr超能文献

基于深度学习的危重症患者反复谵妄预测

Deep Learning-Based Recurrent Delirium Prediction in Critically Ill Patients.

作者信息

Lucini Filipe R, Stelfox Henry T, Lee Joon

机构信息

Department of Critical Care Medicine, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada.

Data Intelligence for Health Lab, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada.

出版信息

Crit Care Med. 2023 Apr 1;51(4):492-502. doi: 10.1097/CCM.0000000000005789. Epub 2023 Feb 15.

Abstract

OBJECTIVES

To predict impending delirium in ICU patients using recurrent deep learning.

DESIGN

Retrospective cohort study.

SETTING

Fifteen medical-surgical ICUs across Alberta, Canada, between January 1, 2014, and January 24, 2020.

PATIENTS

Forty-three thousand five hundred ten ICU admissions from 38,426 patients.

INTERVENTIONS

None.

MEASUREMENTS AND MAIN RESULTS

We used ICU and administrative health data to train deep learning models to predict delirium episodes in the next two 12-hour periods (0-12 and 12-24 hr), starting at 24 hours after ICU admission, and to generate new predictions every 12 hours. We used a comprehensive set of 3,643 features, capturing patient history, early ICU admission information (first 24 hr), and the temporal dynamics of various clinical variables throughout the ICU admission. Our deep learning architecture consisted of a feature embedding, a recurrent, and a prediction module. Our best model based on gated recurrent units yielded a sensitivity of 0.810, a specificity of 0.848, a precision (positive predictive value) of 0.704, and an area under the receiver operating characteristic curve (AUROC) of 0.909 in the hold-out test set for the 0-12-hour prediction horizon. For the 12-24-hour prediction horizon, the same model achieved a sensitivity of 0.791, a specificity of 0.807, a precision of 0.637, and an AUROC of 0.895 in the test set.

CONCLUSIONS

Our delirium prediction model achieved strong performance by applying deep learning to a dataset that is at least one order of magnitude larger than those used in previous studies. Another novel aspect of our study is the temporal nature of our features and predictions. Our model enables accurate prediction of impending delirium in the ICU, which can potentially lead to early intervention, more efficient allocation of ICU resources, and improved patient outcomes.

摘要

目的

运用递归深度学习预测重症监护病房(ICU)患者即将发生的谵妄。

设计

回顾性队列研究。

设置

2014年1月1日至2020年1月24日期间,加拿大艾伯塔省的15个内科-外科重症监护病房。

患者

来自38426名患者的43510例ICU入院病例。

干预措施

无。

测量指标及主要结果

我们使用ICU和行政健康数据训练深度学习模型,以预测从ICU入院后24小时开始的接下来两个12小时时间段(0 - 12小时和12 - 24小时)内的谵妄发作情况,并每12小时生成新的预测。我们使用了一组全面的3643个特征,涵盖患者病史、ICU早期入院信息(最初24小时)以及整个ICU住院期间各种临床变量的时间动态变化。我们的深度学习架构由一个特征嵌入模块、一个递归模块和一个预测模块组成。在用于0 - 12小时预测期的保留测试集中,基于门控循环单元的最佳模型的灵敏度为0.810,特异性为0.848,精确率(阳性预测值)为0.704,受试者工作特征曲线下面积(AUROC)为0.909。对于12 - 24小时预测期,同一模型在测试集中的灵敏度为0.791,特异性为0.807,精确率为0.637,AUROC为0.895。

结论

我们的谵妄预测模型通过将深度学习应用于一个比先前研究中使用的数据集至少大一个数量级的数据集,取得了良好的性能。我们研究的另一个新颖之处在于我们特征和预测的时间特性。我们的模型能够准确预测ICU中即将发生的谵妄,这可能会带来早期干预、更有效地分配ICU资源以及改善患者预后。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验