Grupo de Investigación en Nanomedicina, Instituto de Ingeniería y Tecnología de la Universidad Autónoma de Ciudad Juárez, 32310, Ciudad Juárez, Chih, Mexico.
Centro de Investigación en Materiales Avanzados, 66600, Apodaca, Nuevo León, Mexico.
Daru. 2023 Jun;31(1):75-82. doi: 10.1007/s40199-023-00455-1. Epub 2023 Feb 15.
Lipid nanoparticles, as a nucleic acid delivery system, have been used as an alternative to treat ocular diseases, since they can cross the ocular barrier and efficiently transfecting nucleic acids to various cells of the eye. The size influences the transfection of genes, biological distribution, diffusion, and cellular uptake. It is therefore important to establish a relationship between size, formulation, and encapsulation percentage.
In this review, we used a search strategy to compare studies of nanomedicine systems aimed at eye diseases where the size of the nanoparticles and the efficiency of encapsulation of genetic material are reported based on the criteria of Preferred Reporting Items for Systematic Reviews (PRISMA ScR 2020 guidelines).
Out of the initial 5932, 169 studies met the inclusion criteria and were included to form the basis of the analysis. Nanoparticles reported are composed mainly of PEG-modified lipids, cholesterol, and cationic lipids, that in combination with messenger or interference RNA, allow the formulation of a nanoparticle with an encapsulation efficiency greater than 95%. The diseases treated mainly focus on conditions related to the retina and cornea. Certain characteristics of nanoparticles increase encapsulation efficiency, such as the size of the nanoparticle and the charge of the outer layer of the nanoparticle.
It is still unknown what characteristics lipid nanoparticles should have to successfully treat human eye illnesses. The in vitro and in vivo investigations covered in this review, however, present encouraging results. To improve encapsulation effectiveness and disease gene silencing, nanoparticle formulation is essential. The most stable nanoparticles are those made mostly of cationic lipids, PEG lipids, and cholesterol, which also effectively encapsulate RNA. The encapsulation efficiency is not only influenced by size, but also by other factors such as methods of preparation.
脂质纳米粒作为一种核酸传递系统,已被用作治疗眼部疾病的替代方法,因为它们可以穿过眼屏障并有效地将核酸转染到眼部的各种细胞中。大小会影响基因的转染、生物分布、扩散和细胞摄取。因此,建立大小、配方和包封率之间的关系非常重要。
在本综述中,我们使用了一种搜索策略来比较旨在治疗眼部疾病的纳米医学系统的研究,其中根据系统评价报告的首选项目(PRISMA ScR 2020 指南)报告了纳米粒的大小和遗传物质的包封效率。
最初的 5932 项中有 169 项研究符合纳入标准,并被纳入分析基础。报道的纳米颗粒主要由聚乙二醇修饰的脂质、胆固醇和阳离子脂质组成,这些脂质与信使或干扰 RNA 结合,允许形成包封效率大于 95%的纳米颗粒。治疗的疾病主要集中在与视网膜和角膜有关的疾病上。某些纳米颗粒的特性可以提高包封效率,例如纳米颗粒的大小和纳米颗粒外层的电荷。
脂质纳米粒应该具有什么特性才能成功治疗人类眼部疾病仍不清楚。然而,本综述中涵盖的体外和体内研究结果令人鼓舞。为了提高封装效果和疾病基因沉默,纳米颗粒的配方是必不可少的。最稳定的纳米颗粒是由阳离子脂质、聚乙二醇脂质和胆固醇组成的纳米颗粒,它们也能有效地包封 RNA。包封效率不仅受大小的影响,还受其他因素的影响,如制备方法。