Departamento de Química Inorgánica, Analítica y Química Física, Pabellón 2, Ciudad Universitaria, Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, C1428EHA Buenos Aires, Argentina.
Instituto de Química-Física de Materiales, Medio Ambiente y Energía (INQUIMAE), Pabellón 2, Ciudad Universitaria, CONICET─Universidad de Buenos Aires, C1428EHA Buenos Aires, Argentina.
J Am Chem Soc. 2023 Mar 8;145(9):5163-5173. doi: 10.1021/jacs.2c11593. Epub 2023 Feb 15.
In natural and artificial photosynthesis, light absorption and catalysis are separate processes linked together by exergonic electron transfer. This leads to free energy losses between the initial excited state, formed after light absorption, and the active catalyst formed after the electron transfer cascade. Additional deleterious processes, such as internal conversion (IC) and vibrational relaxation (VR), also dissipate as much as 20-30% of the absorbed photon energy. Minimization of these energy losses, a holy grail in solar energy conversion and solar fuel production, is a challenging task because excited states are usually strongly coupled which results in negligible kinetic barriers and very fast dissipation. Here, we show that topological control of oligomeric {Ru(bpy)} chromophores resulted in small excited-state electronic couplings, leading to activation barriers for IC by means of inter-ligand electron transfer of around 2000 cm and effectively slowing down dissipation. Two types of excited states are populated upon visible light excitation, that is, a bridging-ligand centered metal-to-ligand charge transfer [MLCT(L)], and a 2,2'-bipyridine-centered MLCT [MLCT(bpy)], which lies 800-1400 cm higher in energy. As a proof-of-concept, bimolecular electron transfer with tri-tolylamine (TTA) as electron donor was performed, which mimics catalyst activation by sacrificial electron donors in typical photocatalytic schemes. Both excited states were efficiently quenched by TTA. Hence, this novel strategy allows to trap higher energy excited states before IC and VR set in, saving between 100 and 170 meV. Furthermore, transient absorption spectroscopy suggests that electron transfer reactions with TTA produced the corresponding L-centered and bpy-centered reduced photosensitizers, which involve different reducing abilities, that is, -0.79 and -0.93 V versus NHE for L and bpy, respectively. Thus, this approach probably leads in fine to a 140 meV more potent reductant for energy conversion schemes and solar fuel production. These results lay the first stone for anti-dissipative energy conversion schemes which, in bimolecular electron transfer reactions, harness the excess energy saved by controlling dissipative conversion pathways.
在自然和人工光合作用中,光吸收和催化是通过放能电子转移连接在一起的两个独立过程。这导致了初始激发态(光吸收后形成)和电子转移级联后形成的活性催化剂之间的自由能损失。其他有害过程,如内转换(IC)和振动弛豫(VR),也会耗散多达 20-30%的吸收光子能量。最大限度地减少这些能量损失,是太阳能转换和太阳能燃料生产的圣杯,这是一项具有挑战性的任务,因为激发态通常是强耦合的,这导致微不足道的动力学障碍和非常快速的耗散。在这里,我们展示了低聚物{Ru(bpy)}发色团的拓扑控制导致了小的激发态电子耦合,通过配体间电子转移使 IC 的激活能达到约 2000cm,从而有效地减缓了耗散。可见光激发后会产生两种类型的激发态,即桥连配体中心的金属-配体电荷转移[MLCT(L)]和 2,2'-联吡啶中心的 MLCT[MLCT(bpy)],其能量高出 800-1400cm。作为概念验证,用三甲苯胺(TTA)作为电子供体进行了双分子电子转移,这模拟了典型光催化方案中牺牲电子供体对催化剂的激活。TTA 有效地猝灭了两种激发态。因此,这种新策略可以在 IC 和 VR 发生之前捕获更高能量的激发态,节省 100-170meV。此外,瞬态吸收光谱表明,与 TTA 的电子转移反应产生了相应的 L 中心和 bpy 中心还原敏化剂,它们涉及不同的还原能力,即 L 和 bpy 的分别为-0.79 和-0.93V 与 NHE 相比。因此,这种方法可能会为能量转换方案和太阳能燃料生产带来更有效的 140meV 还原剂。这些结果为反耗散能量转换方案奠定了基础,在双分子电子转移反应中,通过控制耗散转换途径来利用节省的多余能量。