Suppr超能文献

铁氮杂环卡宾配合物作为有前途的光敏剂。

Fe N-Heterocyclic Carbene Complexes as Promising Photosensitizers.

机构信息

Centre for Analysis and Synthesis, Lund University , Box 124, 22100 Lund, Sweden.

Department of Chemical Physics, Lund University , Box 124, 22100 Lund, Sweden.

出版信息

Acc Chem Res. 2016 Aug 16;49(8):1477-85. doi: 10.1021/acs.accounts.6b00186. Epub 2016 Jul 25.

Abstract

The photophysics and photochemistry of transition metal complexes (TMCs) has long been a hot field of interdisciplinary research. Rich metal-based redox processes, together with a high variety in electronic configurations and excited-state dynamics, have rendered TMCs excellent candidates for interconversion between light, chemical, and electrical energies in intramolecular, supramolecular, and interfacial arrangements. In specific applications such as photocatalytic organic synthesis, photoelectrochemical cells, and light-driven supramolecular motors, light absorption by a TMC-based photosensitizer and subsequent excited-state energy or electron transfer constitute essential steps. In this context, TMCs based on rare and expensive metals, such as ruthenium and iridium, are frequently employed as photosensitizers, which is obviously not ideal for large-scale implementation. In the search for abundant and environmentally benign solutions, six-coordinate Fe(II) complexes (Fe(II)L6) have been widely considered as highly desirable alternatives. However, not much success has been achieved due to the extremely short-lived triplet metal-to-ligand charge transfer ((3)MLCT) excited state that is deactivated by low-lying metal-centered (MC) states on a 100 fs time scale. A fundamental strategy to design useful Fe-based photosensitizers is thus to destabilize the MC states relative to the (3)MLCT state by increasing the ligand field strength, with special focus on making eg σ* orbitals on the Fe center energetically less accessible. Previous efforts to directly transplant successful strategies from Ru(II)L6 complexes unfortunately met with limited success in this regard, despite their close chemical kinship. In this Account, we summarize recent promising results from our and other groups in utilizing strongly σ-donating N-heterocyclic carbene (NHC) ligands to make strong-field Fe(II)L6 complexes with significantly extended (3)MLCT lifetimes. Already some of the first homoleptic bis(tridentate) complexes incorporating (CNHC^Npyridine^CNHC)-type ligands gratifyingly resulted in extension of the (3)MLCT lifetime by more than 2 orders of magnitude compared to the parental Fe(tpy)2 (tpy = 2,2':6',2″-terpyridine) complex. Quantum chemical (QC) studies also revealed that the (3)MC instead of the (5)MC state likely dictates the deactivation of the (3)MLCT state, a behavior distinct from traditional Fe(II)L6 complexes but rather resembling Ru analogues. A heteroleptic Fe(II) NHC complex featuring mesoionic bis(1,2,3-triazol-5-ylidene) (btz) ligands also delivered a 100-fold elongation of the (3)MLCT lifetime relative to its parental Fe(bpy)3 (bpy = 2,2'-bipyridine) complex. Again, a Ru-like deactivation mechanism of the (3)MLCT state was indicated by QC studies. With a COOH-functionalized homoleptic complex, a record (3)MLCT lifetime of 37 ps was recently observed on an Al2O3 nanofilm. As a proof of concept, it was further demonstrated that the significant improvement in the (3)MLCT lifetime indeed benefits efficient light harvesting with Fe(II) NHC complexes. For the first time, close-to-unity electron injection from the lowest-energy (3)MLCT state to a TiO2 nanofilm was achieved by a stable Fe(II) complex. This is in complete contrast to conventional Fe(II)L6-derived photosensitizers that could only make use of high-energy photons. These exciting results significantly broaden the understanding of the fundamental photophysics and photochemistry of d(6) Fe(II) complexes. They also open up new possibilities to develop solar energy-converting materials based on this abundant, inexpensive, and intrinsically nontoxic element.

摘要

过渡金属配合物(TMCs)的光物理和光化学一直是跨学科研究的热门领域。丰富的基于金属的氧化还原过程,以及电子构型和激发态动力学的高度多样性,使得 TMC 成为在分子内、超分子和界面排列中在光、化学和电能之间进行相互转换的优异候选者。在特定应用中,如光催化有机合成、光电化学电池和光驱动超分子马达,TMC 基光致敏剂的光吸收和随后的激发态能量或电子转移构成了基本步骤。在这种情况下,基于稀有和昂贵金属(如钌和铱)的 TMC 经常被用作光致敏剂,这对于大规模实施显然不理想。在寻找丰富且环保的解决方案的过程中,六配位 Fe(II)配合物(Fe(II)L6)已被广泛认为是非常理想的替代品。然而,由于极其短暂的金属到配体电荷转移((3)MLCT)激发态会通过低能金属中心(MC)态在 100 fs 的时间尺度上失活,因此并没有取得太多成功。因此,设计有用的 Fe 基光致敏剂的基本策略是通过增加配体场强度来使 MC 态相对于 (3)MLCT 态不稳定,特别关注使 Fe 中心的 eg σ*轨道在能量上不易接近。尽管它们具有密切的化学亲缘关系,但将 Ru(II)L6 配合物中成功策略直接移植到这方面的努力不幸收效甚微。在本报告中,我们总结了我们和其他小组最近在利用强 σ-供体 N-杂环卡宾(NHC)配体来制备具有显著扩展的 (3)MLCT 寿命的强场 Fe(II)L6 配合物方面的一些有希望的结果。已经令人欣慰的是,第一批包含(CNHC^Npyridine^CNHC)-型配体的同核双(三齿)配合物的(3)MLCT 寿命比母体[Fe(tpy)2](2+)(tpy=2,2':6',2″-三联吡啶)配合物延长了两个数量级以上。量子化学(QC)研究还表明,(3)MC 而不是(5)MC 状态可能决定了(3)MLCT 状态的失活,这种行为与传统的 Fe(II)L6 配合物不同,而是类似于 Ru 类似物。一种具有介离子双(1,2,3-三唑-5-亚基)(btz)配体的异核 Fe(II)NHC 配合物也使相对于其母体[Fe(bpy)3](2+)(bpy=2,2'-联吡啶)配合物的(3)MLCT 寿命延长了 100 倍。同样,QC 研究表明,(3)MLCT 状态的失活机制类似于 Ru。使用具有 COOH 功能化的同核配合物,最近在 Al2O3 纳米薄膜上观察到创纪录的(3)MLCT 寿命为 37 ps。作为概念验证,进一步证明了(3)MLCT 寿命的显著改善确实有利于使用 Fe(II)NHC 配合物进行高效光捕获。首次通过稳定的 Fe(II)配合物实现了从最低能量(3)MLCT 态到 TiO2 纳米薄膜的接近 1 的电子注入。这与传统的基于 Fe(II)L6 的光致敏剂形成鲜明对比,后者只能利用高能光子。这些令人兴奋的结果极大地拓宽了对 d(6)Fe(II)配合物的基本光物理和光化学的理解。它们还为基于这种丰富、廉价且本质上无毒的元素开发太阳能转换材料开辟了新的可能性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验