Suppr超能文献

基于角膜移植术后内皮细胞图像的机器学习分析预测未来移植物排斥反应。

Machine Learning Analysis of Postkeratoplasty Endothelial Cell Images for the Prediction of Future Graft Rejection.

机构信息

Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, USA.

Department of Ophthalmology and Visual Sciences, Case Western Reserve University, Cleveland, OH, USA.

出版信息

Transl Vis Sci Technol. 2023 Feb 1;12(2):22. doi: 10.1167/tvst.12.2.22.

Abstract

PURPOSE

This study developed machine learning (ML) classifiers of postoperative corneal endothelial cell images to identify postkeratoplasty patients at risk for allograft rejection within 1 to 24 months of treatment.

METHODS

Central corneal endothelium specular microscopic images were obtained from 44 patients after Descemet membrane endothelial keratoplasty (DMEK), half of whom had experienced graft rejection. After deep learning segmentation of images from all patients' last and second-to-last imaging, time points prior to rejection were analyzed (175 and 168, respectively), and 432 quantitative features were extracted assessing cellular spatial arrangements and cell intensity values. Random forest (RF) and logistic regression (LR) models were trained on novel-to-this-application features from single time points, delta-radiomics, and traditional morphometrics (endothelial cell density, coefficient of variation, hexagonality) via 10 iterations of threefold cross-validation. Final assessments were evaluated on a held-out test set.

RESULTS

ML classifiers trained on novel-to-this-application features outperformed those trained on traditional morphometrics for predicting future graft rejection. RF and LR models predicted post-DMEK patients' allograft rejection in the held-out test set with >0.80 accuracy. RF models trained on novel features from second-to-last time points and delta-radiomics predicted post-DMEK patients' rejection with >0.70 accuracy. Cell-graph spatial arrangement, intensity, and shape features were most indicative of graft rejection.

CONCLUSIONS

ML classifiers successfully predicted future graft rejections 1 to 24 months prior to clinically apparent rejection. This technology could aid clinicians to identify patients at risk for graft rejection and guide treatment plans accordingly.

TRANSLATIONAL RELEVANCE

Our software applies ML techniques to clinical images and enhances patient care by detecting preclinical keratoplasty rejection.

摘要

目的

本研究开发了一种基于机器学习(ML)的术后角膜内皮细胞图像分类器,以识别接受穿透性角膜移植术后 1 至 24 个月内发生同种异体移植物排斥反应的患者。

方法

对 44 例接受 Descemet 膜内皮角膜移植术(DMEK)的患者的中央角膜内皮进行共焦显微镜检查,其中一半患者发生了移植物排斥反应。在对所有患者的最后一次和倒数第二次成像的图像进行深度学习分割后,分析了发生排斥反应之前的时间点(分别为 175 和 168 次),并提取了 432 个定量特征,用于评估细胞空间排列和细胞强度值。通过十次三折交叉验证,在来自单一时间点、delta-radiomics 和传统形态计量学(内皮细胞密度、变异系数、六边形)的新应用特征上,使用随机森林(RF)和逻辑回归(LR)模型进行训练。最后在一个保留的测试集上进行评估。

结果

针对本研究应用开发的 ML 分类器在预测未来移植物排斥反应方面优于传统形态计量学。RF 和 LR 模型在保留的测试集中预测 DMEK 后患者的同种异体移植物排斥反应的准确率超过 0.80。RF 模型使用倒数第二次时间点的新特征和 delta-radiomics 进行训练,可预测 DMEK 后患者的排斥反应,准确率超过 0.70。细胞图空间排列、强度和形状特征最能提示移植物排斥反应。

结论

ML 分类器成功预测了临床明显排斥反应前 1 至 24 个月的未来移植物排斥反应。该技术可以帮助临床医生识别有排斥反应风险的患者,并相应地指导治疗计划。

翻译

许天颖

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1edd/9940770/3ee3b25f636a/tvst-12-2-22-f001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验