Suppr超能文献

对角膜移植后获得的图像质量降低的角膜内皮细胞图像的深度学习自动分割进行定量和定性评估。

Quantitative and qualitative evaluation of deep learning automatic segmentations of corneal endothelial cell images of reduced image quality obtained following cornea transplant.

作者信息

Joseph Naomi, Kolluru Chaitanya, Benetz Beth A M, Menegay Harry J, Lass Jonathan H, Wilson David L

机构信息

Case Western Reserve University, Department of Biomedical Engineering, Cleveland, Ohio, United States.

Case Western Reserve University and University Hospitals Eye Institute, Department of Ophthalmology and Visual Sciences, Cleveland, Ohio, United States.

出版信息

J Med Imaging (Bellingham). 2020 Jan;7(1):014503. doi: 10.1117/1.JMI.7.1.014503. Epub 2020 Feb 14.

Abstract

We are developing automated analysis of corneal-endothelial-cell-layer, specular microscopic images so as to determine quantitative biomarkers indicative of corneal health following corneal transplantation. Especially on these images of varying quality, commercial automated image analysis systems can give inaccurate results, and manual methods are very labor intensive. We have developed a method to automatically segment endothelial cells with a process that included image flattening, U-Net deep learning, and postprocessing to create individual cell segmentations. We used 130 corneal endothelial cell images following one type of corneal transplantation (Descemet stripping automated endothelial keratoplasty) with expert-reader annotated cell borders. We obtained very good pixelwise segmentation performance (e.g., Dice , , across 10 folds). The automated method segmented cells left unmarked by analysts and sometimes segmented cells differently than analysts (e.g., one cell was split or two cells were merged). A clinically informative visual analysis of the held-out test set showed that 92% of cells within manually labeled regions were acceptably segmented and that, as compared to manual segmentation, automation added 21% more correctly segmented cells. We speculate that automation could reduce 15 to 30 min of manual segmentation to 3 to 5 min of manual review and editing.

摘要

我们正在开发角膜内皮细胞层的自动分析方法,即对角膜内皮细胞层的镜面显微镜图像进行分析,以确定角膜移植后指示角膜健康状况的定量生物标志物。特别是对于这些质量各异的图像,商业自动图像分析系统可能会给出不准确的结果,而手动方法又非常耗费人力。我们开发了一种通过包括图像扁平化、U-Net深度学习和后处理在内的过程自动分割内皮细胞的方法,以创建单个细胞的分割图像。我们使用了130张接受一种角膜移植手术(后弹力层剥除自动内皮角膜移植术)后的角膜内皮细胞图像,这些图像上有专家读者标注的细胞边界。我们获得了非常好的逐像素分割性能(例如,在10次交叉验证中,骰子系数 , )。自动方法分割出了分析人员未标记的细胞,并且有时分割细胞的方式与分析人员不同(例如,一个细胞被分割或两个细胞被合并)。对保留测试集进行的具有临床信息价值的视觉分析表明,手动标记区域内92%的细胞被正确分割,并且与手动分割相比,自动化方法多分割出了21%的正确细胞。我们推测,自动化可以将15到30分钟的手动分割时间减少到3到5分钟的手动审核和编辑时间。

相似文献

2
Machine learning for segmenting cells in corneal endothelium images.用于分割角膜内皮细胞图像的机器学习
Proc SPIE Int Soc Opt Eng. 2019 Feb;10950. doi: 10.1117/12.2513580. Epub 2019 Mar 13.

引用本文的文献

本文引用的文献

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验