Department of Ophthalmology and Visual Sciences, Case Western Reserve University, Cleveland, OH, USA.
Cornea Image Analysis Reading Center, University Hospitals Eye Institute, Cleveland, OH, USA.
Transl Vis Sci Technol. 2024 Aug 1;13(8):40. doi: 10.1167/tvst.13.8.40.
To determine endothelial cell density (ECD) from real-world donor cornea endothelial cell (EC) images using a self-supervised deep learning segmentation model.
Two eye banks (Eversight, VisionGift) provided 15,138 single, unique EC images from 8169 donors along with their demographics, tissue characteristics, and ECD. This dataset was utilized for self-supervised training and deep learning inference. The Cornea Image Analysis Reading Center (CIARC) provided a second dataset of 174 donor EC images based on image and tissue quality. These images were used to train a supervised deep learning cell border segmentation model. Evaluation between manual and automated determination of ECD was restricted to the 1939 test EC images with at least 100 cells counted by both methods.
The ECD measurements from both methods were in excellent agreement with rc of 0.77 (95% confidence interval [CI], 0.75-0.79; P < 0.001) and bias of 123 cells/mm2 (95% CI, 114-131; P < 0.001); 81% of the automated ECD values were within 10% of the manual ECD values. When the analysis was further restricted to the cropped image, the rc was 0.88 (95% CI, 0.87-0.89; P < 0.001), bias was 46 cells/mm2 (95% CI, 39-53; P < 0.001), and 93% of the automated ECD values were within 10% of the manual ECD values.
Deep learning analysis provides accurate ECDs of donor images, potentially reducing analysis time and training requirements.
The approach of this study, a robust methodology for automatically evaluating donor cornea EC images, could expand the quantitative determination of endothelial health beyond ECD.
使用自监督深度学习分割模型从真实世界的供体角膜内皮细胞(EC)图像中确定内皮细胞密度(ECD)。
两个眼库(Eversight、VisionGift)提供了来自 8169 名供体的 15138 张独特的 EC 图像及其人口统计学、组织特征和 ECD。该数据集用于自监督训练和深度学习推断。角膜图像分析阅读中心(CIARC)根据图像和组织质量提供了第二个包含 174 张供体 EC 图像的数据集。这些图像用于训练有监督的深度学习细胞边界分割模型。手动和自动确定 ECD 之间的评估仅限于由两种方法至少计数 100 个细胞的 1939 张测试 EC 图像。
两种方法的 ECD 测量值具有极好的一致性,rc 为 0.77(95%置信区间 [CI],0.75-0.79;P < 0.001),偏差为 123 个细胞/mm2(95%CI,114-131;P < 0.001);81%的自动 ECD 值在手动 ECD 值的 10%以内。当分析进一步限于裁剪图像时,rc 为 0.88(95%CI,0.87-0.89;P < 0.001),偏差为 46 个细胞/mm2(95%CI,39-53;P < 0.001),并且 93%的自动 ECD 值在手动 ECD 值的 10%以内。
深度学习分析提供了供体图像的准确 ECD,可能减少了分析时间和培训要求。
这是一篇关于使用自监督深度学习分割模型从真实世界的供体角膜内皮细胞(EC)图像中确定内皮细胞密度(ECD)的研究。该研究由两个眼库(Eversight、VisionGift)提供了来自 8169 名供体的 15138 张独特的 EC 图像及其人口统计学、组织特征和 ECD。该数据集用于自监督训练和深度学习推断。角膜图像分析阅读中心(CIARC)根据图像和组织质量提供了第二个包含 174 张供体 EC 图像的数据集。这些图像用于训练有监督的深度学习细胞边界分割模型。手动和自动确定 ECD 之间的评估仅限于由两种方法至少计数 100 个细胞的 1939 张测试 EC 图像。研究结果表明,两种方法的 ECD 测量值具有极好的一致性,rc 为 0.77(95%置信区间 [CI],0.75-0.79;P < 0.001),偏差为 123 个细胞/mm2(95%CI,114-131;P < 0.001)。此外,81%的自动 ECD 值在手动 ECD 值的 10%以内。当分析进一步限于裁剪图像时,rc 为 0.88(95%CI,0.87-0.89;P < 0.001),偏差为 46 个细胞/mm2(95%CI,39-53;P < 0.001),并且 93%的自动 ECD 值在手动 ECD 值的 10%以内。这些结果表明,深度学习分析可以提供供体图像的准确 ECD,从而可能减少分析时间和培训要求。