Department of Physics, University of Virginia, Charlottesville, Virginia 22904, United States.
Department of Physics, The Ohio State University, Columbus, Ohio 43210, United States.
J Phys Chem A. 2023 Mar 2;127(8):1894-1900. doi: 10.1021/acs.jpca.3c00568. Epub 2023 Feb 15.
Charge migration (CM) is a coherent attosecond process that involves the movement of localized holes across a molecule. To determine the relationship between a molecule's structure and the CM dynamics it exhibits, we perform systematic studies of para-functionalized bromobenzene molecules (X-CH-R) using real-time time-dependent density functional theory. We initiate valence-electron dynamics by emulating rapid strong-field ionization leading to a localized hole on the bromine atom. The resulting CM, which takes on the order of 1 fs, occurs via an X localized → CH delocalized → R localized mechanism. Interestingly, the hole contrast on the acceptor functional group increases with increasing electron-donating strength. This trend is well-described by the Hammett σ value of the group, which is a commonly used metric for quantifying the effect of functionalization on the chemical reactivity of benzene derivatives. These results suggest that simple attochemistry principles and a density-based picture can be used to predict and understand CM.
电荷迁移(CM)是一个相干的阿秒过程,涉及到局域空穴在分子中的跨越移动。为了确定分子结构与它表现出的 CM 动力学之间的关系,我们使用实时含时密度泛函理论对对位官能化的溴苯分子(X-CH-R)进行了系统研究。我们通过模拟导致溴原子上局域空穴的快速强场电离来引发价电子动力学。CM 的发生时间约为 1 fs,通过 X 局域化→CH 离域化→R 局域化的机制进行。有趣的是,受主官能团上的空穴对比度随电子供体强度的增加而增加。这种趋势可以很好地用基团的哈米特 σ 值来描述,哈米特 σ 值是用于量化官能团对苯衍生物化学反应性影响的常用度量。这些结果表明,简单的原子化学原理和基于密度的图像可以用于预测和理解 CM。