Scheidegger Alan, Golubev Nikolay V, Vaníček Jiří J L
Laboratory of Theoretical Physical Chemistry, Institut des Sciences et Ingénierie Chimiques, Ecole Polytechnique Fédérale de Lausanne, Lausanne CH-1015, Switzerland.
Department of Physics, University of Arizona, Tucson, AZ 85721.
Proc Natl Acad Sci U S A. 2025 Jun 3;122(22):e2501319122. doi: 10.1073/pnas.2501319122. Epub 2025 May 30.
Coherent superposition of electronic states, created by ionizing a molecule, can initiate ultrafast dynamics of the electron density. Correlation between nuclear and electron motions, however, typically dissipates the electronic coherence in only a few femtoseconds, especially in larger and more flexible molecules. We, therefore, use ab initio semiclassical dynamics to study decoherence in a sequence of analogous organic molecules of increasing size and find, surprisingly, that extending the carbon skeleton in propynal analogs slows down decoherence and prolongs charge migration. To elucidate this observation, we decompose the overall decoherence into contributions from individual vibrational modes and show that: 1) The initial decay of electronic coherence is caused by high- and intermediate-frequency vibrations via momentum separation of nuclear wavepackets evolving on different electronic surfaces. 2) At later times, the coherence disappears completely due to the increasing position separation in the low-frequency modes. 3) In agreement with another study, we observe that only normal modes that preserve the symmetry of the molecule induce decoherence. All together, we justify the enhanced charge migration by a combination of increased hole-mixing and the disappearance of decoherence contributions from specific vibrational modes-CO stretching in butynal and various H rockings in pentynal.
通过电离分子产生的电子态的相干叠加,可以引发电子密度的超快动力学。然而,核运动与电子运动之间的相关性通常仅在几飞秒内就会使电子相干性消散,尤其是在更大且更灵活的分子中。因此,我们使用从头算半经典动力学来研究一系列尺寸不断增加的类似有机分子中的退相干现象,令人惊讶地发现,在丙炔醛类似物中扩展碳骨架会减缓退相干并延长电荷迁移。为了阐明这一观察结果,我们将整体退相干分解为各个振动模式的贡献,并表明:1)电子相干性的初始衰减是由高频和中频振动通过在不同电子表面上演化的核波包的动量分离引起的。2)在稍后阶段,由于低频模式中位置分离的增加,相干性完全消失。3)与另一项研究一致,我们观察到只有保持分子对称性的简正模式会引起退相干。总之,我们通过增加空穴混合以及特定振动模式(丁炔醛中的CO伸缩和戊炔醛中的各种H摇摆)的退相干贡献消失的组合,解释了增强的电荷迁移现象。