Suppr超能文献

有机半导体中电子动力学的实时CASSCF(埃伦费斯特)建模。由量子相干驱动的动力学反应路径。应用于自由基有机半导体。

Real-Time CASSCF (Ehrenfest) Modeling of Electron Dynamics in Organic Semiconductors. Dynamics Reaction Paths Driven by Quantum Coherences. Application to a Radical Organic Semiconductor.

作者信息

Deumal Mercè, Ribas-Ariño Jordi, Roncero Cristina, Robb Michael A

机构信息

Departament de Ciència de Materials i Química Física & IQTCUB, Facultat de Química, Universitat de Barcelona, Martí i Franquès 1, Barcelona E-08820, Spain.

Department of Chemistry, Molecular Sciences Research Hub, Imperial College London, White City Campus 80 Wood Lane, W12 0BZ London, United Kingdom.

出版信息

J Phys Chem A. 2024 Dec 12;128(49):10555-10567. doi: 10.1021/acs.jpca.4c06466. Epub 2024 Nov 27.

Abstract

We present a strategy for the modeling of charge carrier dynamics in organic semiconductors using conventional quantum chemistry methods, including the analytic gradient for nuclear motion. The theoretical approach uses real-time CASSCF (Ehrenfest) all-electron dynamics coupled to classical nuclear dynamics for the special case of a small number (4-8) of molecular units. The objective is to obtain mechanistic/atomistic insight at the electronic structure level, relating to spin density dynamics, to the effect of crystal structure (e.g., slippage between spin/charge carriers), and to ferromagnetic and antiferromagnetic effects. The initial conditions for our simulations use the equilibrium structures of all the molecular units. At this geometry, a localized hole on one of the units corresponds to a coherent superposition of adiabatic states. We thus generate a dynamics reaction path driven by quantum coherences. Our aim is to inform experiment and to compare with parametrized theoretical models. The methodology is demonstrated for a perfectly π-stacked ethylene model (up to 8 eclipsed molecular units) for both hole transfer and localized exciton transfer. An application for hole transfer is presented for bisdithiazolyl (S,S) and bisdiselenazolyl (Se,Se) radicals for the special case of ferromagnetic coupling. For these examples, the embedded pyridine radical model organic chromophore (up to 6 eclipsed π-stacked molecular units) has been studied on its own as well as the target bisdithiazolyl (S,S) and bisdiselenazolyl (Se,Se) systems. A significant difference between these systems and the ethylene and pyridine stacks is that the (S,S) and (Se,Se) systems exhibit molecular slippage rather than being perfectly eclipsed. This slippage may result from crystal defects or intermolecular vibrations. For the model systems, the electron dynamics is dominated by the initial and final molecular units, irrespective of the length of the chain. The intervening units act as a "superexchange bridge". Our simulations reveal that, in the presence of slippage, charge migration cannot propagate across the entire system; instead, the coherence length is limited to 3 molecular units. The results also suggest that the mechanism of charge transport is different for bisdiselenazolyl (Se,Se) (superexchange-like A -[B]→ C) and bisdithiazolyl (S,S) (direct A → C). An analysis of the spin density suggests that, in the charge carrier dynamics, the additional charge carried by the Se versus S in the "scaffold" is small. Since we use a small number of molecular units, the coupled nuclear dynamics is seen to be complementary to the electron dynamics (i.e., creating a hole causes bond length contraction while filling a hole with an electron lengthens the bond). In all the cases studied, the mechanism of charge mobility is wave-like, rather than hopping, because we use the time dependent Schrödinger equation to propagate the electronic wave function.

摘要

我们提出了一种使用传统量子化学方法对有机半导体中载流子动力学进行建模的策略,包括核运动的解析梯度。该理论方法针对少量(4 - 8个)分子单元的特殊情况,采用实时CASSCF(埃伦费斯特)全电子动力学与经典核动力学相结合的方式。目标是在电子结构层面获得与自旋密度动力学、晶体结构效应(例如自旋/电荷载流子之间的滑移)以及铁磁和反铁磁效应相关的机理/原子层面的见解。我们模拟的初始条件使用所有分子单元的平衡结构。在这种几何构型下,一个单元上的局域空穴对应于绝热态的相干叠加。因此,我们生成了由量子相干驱动的动力学反应路径。我们的目的是为实验提供信息并与参数化理论模型进行比较。该方法针对完美π堆积的乙烯模型(多达8个重叠分子单元)进行了空穴转移和局域激子转移的演示。针对铁磁耦合的特殊情况,给出了双二噻唑基(S,S)和双二硒唑基(Se,Se)自由基的空穴转移应用。对于这些例子,已分别研究了嵌入吡啶自由基模型有机发色团(多达6个重叠π堆积分子单元)以及目标双二噻唑基(S,S)和双二硒唑基(Se,Se)体系。这些体系与乙烯和吡啶堆积之间的一个显著差异在于,(S,S)和(Se,Se)体系表现出分子滑移,而不是完美重叠。这种滑移可能是由晶体缺陷或分子间振动引起的。对于模型体系,无论链的长度如何,电子动力学都由初始和最终分子单元主导。中间单元充当“超交换桥”。我们的模拟表明,在存在滑移的情况下,电荷迁移无法在整个系统中传播;相反,相干长度限制在3个分子单元。结果还表明,双二硒唑基(Se,Se)(类似超交换的A -[B]→ C)和双二噻唑基(S,S)(直接A → C)的电荷传输机制不同。对自旋密度的分析表明,在载流子动力学中,“支架”中Se与S所携带的额外电荷很小。由于我们使用少量分子单元,耦合核动力学被视为与电子动力学互补(即产生一个空穴会导致键长收缩,而用一个电子填充一个空穴会使键长延长)。在所有研究的情况下,电荷迁移机制是波状的,而不是跳跃式的,因为我们使用含时薛定谔方程来传播电子波函数。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/de2b/11647903/03f8ce439a5d/jp4c06466_0001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验