Liang Lan, Chen Guanyi, Zhao Jianhui, Shao Penghui, Li Ning, He Mengting, Fu Qinglong, Yan Beibei, Hou Li-An
School of Environmental Science and Engineering/Tianjin Key Lab of Biomass/Wastes Utilization, Tianjin University, Tianjin 300350, China.
School of Environmental Science and Engineering/Tianjin Key Lab of Biomass/Wastes Utilization, Tianjin University, Tianjin 300350, China; School of Mechanical Engineering, Tianjin University of Commerce, Tianjin 300134, China.
Sci Total Environ. 2023 May 10;872:162217. doi: 10.1016/j.scitotenv.2023.162217. Epub 2023 Feb 13.
The peroxymonosulfate (PMS) process may be hindered severely due to natural organic matter (NOM) conversion in the treatment of emerging pollutants from river water, becoming a critical engineering and technical issue. In this study, a Fe(II)-induced river water (RW)/PMS catalytic system was constructed for investigating molecular transformation of NOM and related influence mechanism to sulfamethoxazole (SMX) degradation. Fourier transform ion cyclotron resonance mass spectrometry (FTICR-MS) analysis indicated that NOM molecules containing no more than one heteroatom in river may be attacked by hydroxyl radicals (OH) and then polymerized, converting into molecules with two or three heteroatoms during PMS oxidation. Based on the correlation analysis, CHONP-NOM, CHOSP-NOM and CHONSP-NOM showed a significant inhibition against SMX degradation, while CHONS-NOM exhibited a moderate inhibitory effect. Besides, more condensed aromatic structures, carbohydrates and tannins were generated via reactive species (OH and sulfate radicals (SO)) oxidation, radical addition and polymerization reactions. Notably, condensed aromatic structures, carbohydrates and tannins presented weak, modest and strong inhibition to SMX degradation, respectively. Based on the current results, the inhibition of target pollutants degradation would be mitigated via regulation of NOM molecules in a Fe(II)-induced PMS activation system, providing valuable information to reduce NOM impact. In addition, this study paves the way to achieve efficient removal of emerging pollutants from river water.
在处理河水中的新兴污染物时,由于天然有机物(NOM)的转化,过一硫酸盐(PMS)工艺可能会受到严重阻碍,这已成为一个关键的工程技术问题。在本研究中,构建了一种铁(II)诱导的河水(RW)/PMS催化体系,用于研究NOM的分子转化以及对磺胺甲恶唑(SMX)降解的相关影响机制。傅里叶变换离子回旋共振质谱(FTICR-MS)分析表明,河水中含不超过一个杂原子的NOM分子可能会受到羟基自由基(OH)的攻击,然后发生聚合,在PMS氧化过程中转化为含两个或三个杂原子的分子。基于相关性分析,CHONP-NOM、CHOSP-NOM和CHONSP-NOM对SMX降解表现出显著抑制作用,而CHONS-NOM表现出中等抑制作用。此外,通过活性物种(OH和硫酸根自由基(SO))氧化、自由基加成和聚合反应生成了更多缩合芳香结构、碳水化合物和单宁。值得注意的是,缩合芳香结构、碳水化合物和单宁对SMX降解分别表现出弱、中等和强抑制作用。基于目前的结果,在铁(II)诱导的PMS活化体系中,通过调控NOM分子可减轻对目标污染物降解的抑制作用,为减少NOM影响提供了有价值的信息。此外,本研究为实现河水中新兴污染物的高效去除铺平了道路。