The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, School of Environment and Energy, South China University of Technology, Guangzhou 510006, P. R. China.
Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, P. R. China.
Environ Sci Technol. 2024 Aug 20;58(33):14949-14960. doi: 10.1021/acs.est.4c06770. Epub 2024 Aug 10.
The presence and induced secondary reactions of natural organic matter (NOM) significantly affect the remediation efficacy of in situ chemical oxidation (ISCO) systems. However, it remains unclear how this process relates to organic radicals generated from reactions between the NOM and oxidants. The study, for the first time, reported the vital roles and transformation pathways of carbon-centered radicals (CCR) derived from NOM in activated persulfate (PS) systems. Results showed that both typical terrestrial/aquatic NOM isolates and collected NOM samples produced CCR by scavenging activated PS and greatly enhanced the dehalogenation performance under anoxic conditions. Under oxic conditions, newly formed CCR could be oxidized by O and generate organic peroxide intermediates (ROO) to catalytically yield additional OH without the involvement of PS. Nuclear magnetic resonance (NMR) and Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR-MS) results indicated that CCR predominantly formed from carboxyl and aliphatic structures instead of aromatics within NOM through hydrogen abstraction and decarboxylation reactions by SO or OH. Specific anoxic reactions (i.e., dehalogenation and intramolecular cross-coupling reactions) further promoted the transformation of CCR to more unsaturated and polymerized/condensed compounds. In contrast, oxic propagation of ROO enhanced bond breakage/ring cleavage and degradation of CCR due to the presence of additional OH and self-decomposition. This study provides novel insights into the role of NOM and O in ISCO and the development of engineered strategies for creating organic radicals capable of enhancing the remediation of specific contaminants and recovering organic carbon.
天然有机物 (NOM) 的存在及其诱导的次生反应会显著影响原位化学氧化 (ISCO) 系统的修复效果。然而,目前尚不清楚这一过程与 NOM 与氧化剂之间反应生成的有机自由基有何关联。本研究首次报道了源自 NOM 的碳中心自由基 (CCR) 在活化过硫酸盐 (PS) 体系中的重要作用和转化途径。结果表明,典型的陆地/水生 NOM 分离物和采集的 NOM 样品均通过清除活化的 PS 产生 CCR,并在缺氧条件下大大增强了脱卤性能。在有氧条件下,新形成的 CCR 可被 O 氧化,并生成有机过氧中间体 (ROO),无需 PS 参与即可催化生成额外的 OH。核磁共振 (NMR) 和傅里叶变换离子回旋共振质谱 (FT-ICR-MS) 结果表明,CCR 主要通过 SO 或 OH 的氢提取和脱羧反应,从 NOM 的羧基和脂肪族结构中形成,而不是从芳环中形成。特定的缺氧反应(即脱卤和分子内交叉偶联反应)进一步促进了 CCR 向更不饱和和聚合/缩合化合物的转化。相比之下,由于存在额外的 OH 和自分解,ROO 的有氧传播会增强 CCR 的键断裂/环裂解和降解。本研究为 NOM 和 O 在 ISCO 中的作用以及开发能够增强特定污染物修复和有机碳回收的有机自由基工程策略提供了新的见解。