Suppr超能文献

功能连接模式网络和视觉网络的连通性反映了持续自然情感体验的时间累积效应。

Functional connectivity profiles of the default mode and visual networks reflect temporal accumulative effects of sustained naturalistic emotional experience.

机构信息

School of Biomedical Engineering, Medical School, Shenzhen University, Shenzhen 518060, China; Guangdong Provincial Key Laboratory of Biomedical Measurements and Ultrasound Imaging, Shenzhen 518060, China.

Institute of Computing and Intelligence, Harbin Institute of Technology, Shenzhen, China; Peng Cheng Laboratory, Shenzhen 518055, China; Marshall Laboratory of Biomedical Engineering, Shenzhen 518060, China.

出版信息

Neuroimage. 2023 Apr 1;269:119941. doi: 10.1016/j.neuroimage.2023.119941. Epub 2023 Feb 13.

Abstract

Determining and decoding emotional brain processes under ecologically valid conditions remains a key challenge in affective neuroscience. The current functional Magnetic Resonance Imaging (fMRI) based emotion decoding studies are mainly based on brief and isolated episodes of emotion induction, while sustained emotional experience in naturalistic environments that mirror daily life experiences are scarce. Here we used 12 different 10-minute movie clips as ecologically valid emotion-evoking procedures in n = 52 individuals to explore emotion-specific fMRI functional connectivity (FC) profiles on the whole-brain level at high spatial resolution (432 parcellations including cortical and subcortical structures). Employing machine-learning based decoding and cross validation procedures allowed to investigate FC profiles contributing to classification that can accurately distinguish sustained happiness and sadness and that generalize across subjects, movie clips, and parcellations. Both functional brain network-based and subnetwork-based emotion classification results suggested that emotion manifests as distributed representation of multiple networks, rather than a single functional network or subnetwork. Further, the results showed that the Visual Network (VN) and Default Mode Network (DMN) associated functional networks, especially VN-DMN, exhibited a strong contribution to emotion classification. To further estimate the temporal accumulative effect of naturalistic long-term movie-based video-evoking emotions, we divided the 10-min episode into three stages: early stimulation (1∼200 s), middle stimulation (201∼400 s), and late stimulation (401∼600 s) and examined the emotion classification performance at different stimulation stages. We found that the late stimulation contributes most to the classification (accuracy=85.32%, F1-score=85.62%) compared to early and middle stimulation stages, implying that continuous exposure to emotional stimulation can lead to more intense emotions and further enhance emotion-specific distinguishable representations. The present work demonstrated that sustained happiness and sadness under naturalistic conditions are presented in emotion-specific network profiles and these expressions may play different roles in the generation and modulation of emotions. These findings elucidated the importance of network level adaptations for sustained emotional experiences during naturalistic contexts and open new venues for imaging network level contributions under naturalistic conditions.

摘要

在生态有效的条件下确定和解码情感大脑过程仍然是情感神经科学的一个关键挑战。当前基于功能磁共振成像(fMRI)的情绪解码研究主要基于情绪诱导的短暂和孤立的片段,而在自然环境中持续的情绪体验,即反映日常生活经历的情绪体验则很少。在这里,我们使用 12 个不同的 10 分钟电影片段作为生态有效的诱发情绪的程序,在 n = 52 名个体中探索全脑水平的情绪特异性 fMRI 功能连接(FC)图谱,具有高空间分辨率(包括皮质和皮质下结构的 432 个分割)。采用基于机器学习的解码和交叉验证程序,可以研究有助于分类的 FC 图谱,这些分类可以准确区分持续的快乐和悲伤,并在个体、电影片段和分割上具有通用性。基于功能大脑网络和子网的情绪分类结果均表明,情绪表现为多个网络的分布式表示,而不是单个功能网络或子网。此外,结果表明,视觉网络(VN)和默认模式网络(DMN)相关的功能网络,尤其是 VN-DMN,对情绪分类有很强的贡献。为了进一步估计基于自然主义的长期电影诱发情绪的自然积累效应,我们将 10 分钟的片段分为三个阶段:早期刺激(1∼200 s)、中期刺激(201∼400 s)和晚期刺激(401∼600 s),并检查不同刺激阶段的情绪分类性能。我们发现晚期刺激对分类的贡献最大(准确性=85.32%,F1 分数=85.62%),与早期和中期刺激阶段相比,这意味着连续暴露于情绪刺激会导致更强烈的情绪,并进一步增强情绪特异性的可区分表示。本工作表明,在自然条件下持续的快乐和悲伤呈现出情绪特异性的网络图谱,这些表达可能在情绪的产生和调节中发挥不同的作用。这些发现阐明了在自然情境下持续的情绪体验中网络水平适应的重要性,并为自然条件下的网络水平贡献成像开辟了新途径。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验