Doborjeh Zohreh, Doborjeh Maryam, Sumich Alexander, Singh Balkaran, Merkin Alexander, Budhraja Sugam, Goh Wilson, Lai Edmund M-K, Williams Margaret, Tan Samuel, Lee Jimmy, Kasabov Nikola
Audiology Department, School of Population Health, Faculty of Medical and Health Sciences, The University of Auckland, Auckland, New Zealand.
Centre for Brain Research, The University of Auckland, Auckland, New Zealand.
Schizophrenia (Heidelb). 2023 Feb 15;9(1):10. doi: 10.1038/s41537-023-00335-2.
Finding predictors of social and cognitive impairment in non-transition Ultra-High-Risk individuals (UHR) is critical in prognosis and planning of potential personalised intervention strategies. Social and cognitive functioning observed in youth at UHR for psychosis may be protective against transition to clinically relevant illness. The current study used a computational method known as Spiking Neural Network (SNN) to identify the cognitive and social predictors of transitioning outcome. Participants (90 UHR, 81 Healthy Control (HC)) completed batteries of neuropsychological tests in the domains of verbal memory, working memory, processing speed, attention, executive function along with social skills-based performance at baseline and 4 × 6-month follow-up intervals. The UHR status was recorded as Remitters, Converters or Maintained. SNN were used to model interactions between variables across groups over time and classify UHR status. The performance of SNN was examined relative to other machine learning methods. Higher interaction between social and cognitive variables was seen for the Maintained, than Remitter subgroup. Findings identified the most important cognitive and social variables (particularly verbal memory, processing speed, attention, affect and interpersonal social functioning) that showed discriminative patterns in the SNN models of HC vs UHR subgroups, with accuracies up to 80%; outperforming other machine learning models (56-64% based on 18 months data). This finding is indicative of a promising direction for early detection of social and cognitive impairment in UHR individuals that may not anticipate transition to psychosis and implicate early initiated interventions to stem the impact of clinical symptoms of psychosis.
在非转化型超高风险个体(UHR)中寻找社会和认知障碍的预测因素对于预后以及潜在个性化干预策略的规划至关重要。在超高风险精神病青年中观察到的社会和认知功能可能对向临床相关疾病的转化具有保护作用。当前的研究使用了一种称为脉冲神经网络(SNN)的计算方法来识别转化结果的认知和社会预测因素。参与者(90名超高风险个体,81名健康对照(HC))在基线以及4个6个月的随访间隔期完成了一系列言语记忆、工作记忆、处理速度、注意力、执行功能领域的神经心理学测试以及基于社交技能的表现测试。超高风险个体的状态记录为缓解者、转化者或维持者。SNN被用于对不同组变量随时间的相互作用进行建模并对超高风险个体状态进行分类。相对于其他机器学习方法,对SNN的性能进行了检验。维持组的社会和认知变量之间的相互作用高于缓解亚组。研究结果确定了最重要的认知和社会变量(特别是言语记忆、处理速度、注意力、情感和人际社交功能),这些变量在健康对照与超高风险个体亚组的SNN模型中呈现出判别模式,准确率高达80%;优于其他机器学习模型(基于18个月数据的准确率为56 - 64%)。这一发现表明在超高风险个体中早期检测社会和认知障碍有一个很有前景的方向,这些个体可能未预期会转化为精神病,并意味着要尽早启动干预措施以遏制精神病临床症状的影响。