de Nijs Jessica, Burger Thijs J, Janssen Ronald J, Kia Seyed Mostafa, van Opstal Daniël P J, de Koning Mariken B, de Haan Lieuwe, Cahn Wiepke, Schnack Hugo G
Department of Psychiatry, University Medical Center Utrecht, UMC Utrecht Brain Center, Utrecht University, Utrecht, The Netherlands.
Arkin, Institute for Mental Health, Amsterdam, The Netherlands.
NPJ Schizophr. 2021 Jul 2;7(1):34. doi: 10.1038/s41537-021-00162-3.
Schizophrenia and related disorders have heterogeneous outcomes. Individualized prediction of long-term outcomes may be helpful in improving treatment decisions. Utilizing extensive baseline data of 523 patients with a psychotic disorder and variable illness duration, we predicted symptomatic and global outcomes at 3-year and 6-year follow-ups. We classified outcomes as (1) symptomatic: in remission or not in remission, and (2) global outcome, using the Global Assessment of Functioning (GAF) scale, divided into good (GAF ≥ 65) and poor (GAF < 65). Aiming for a robust and interpretable prediction model, we employed a linear support vector machine and recursive feature elimination within a nested cross-validation design to obtain a lean set of predictors. Generalization to out-of-study samples was estimated using leave-one-site-out cross-validation. Prediction accuracies were above chance and ranged from 62.2% to 64.7% (symptomatic outcome), and 63.5-67.6% (global outcome). Leave-one-site-out cross-validation demonstrated the robustness of our models, with a minor drop in predictive accuracies of 2.3% on average. Important predictors included GAF scores, psychotic symptoms, quality of life, antipsychotics use, psychosocial needs, and depressive symptoms. These robust, albeit modestly accurate, long-term prognostic predictions based on lean predictor sets indicate the potential of machine learning models complementing clinical judgment and decision-making. Future model development may benefit from studies scoping patient's and clinicians' needs in prognostication.
精神分裂症及相关障碍具有异质性结局。对长期结局进行个体化预测可能有助于改善治疗决策。利用523例精神障碍患者广泛的基线数据以及不同的病程,我们预测了3年和6年随访时的症状性结局和整体结局。我们将结局分类为:(1) 症状性结局:缓解或未缓解;(2) 整体结局,使用功能总体评定量表(GAF),分为良好(GAF≥65)和不良(GAF<65)。为了建立一个强大且可解释的预测模型,我们在嵌套交叉验证设计中采用线性支持向量机和递归特征消除,以获得一组精简的预测因子。使用留一站点法交叉验证评估模型对研究外样本的泛化能力。预测准确率高于随机水平,症状性结局的准确率在62.2%至64.7%之间,整体结局的准确率在63.5%至67.6%之间。留一站点法交叉验证证明了我们模型的稳健性,预测准确率平均仅略有下降2.3%。重要的预测因子包括GAF评分、精神病性症状、生活质量、抗精神病药物使用、心理社会需求和抑郁症状。这些基于精简预测因子集的稳健的长期预后预测,尽管准确性一般,但表明机器学习模型在补充临床判断和决策方面具有潜力。未来的模型开发可能受益于针对患者和临床医生在预后方面需求的研究。