Suppr超能文献

个体化预测临床高风险青年精神病前驱症状缓解。

Individualized Prediction of Prodromal Symptom Remission for Youth at Clinical High Risk for Psychosis.

机构信息

Department of Psychology, Yale University, New Haven, CT, USA.

Department of Psychiatry, Hotchkiss Brain Institute, Calgary, AB, Canada.

出版信息

Schizophr Bull. 2022 Mar 1;48(2):395-404. doi: 10.1093/schbul/sbab115.

Abstract

The clinical high-risk period before a first episode of psychosis (CHR-P) has been widely studied with the goal of understanding the development of psychosis; however, less attention has been paid to the 75%-80% of CHR-P individuals who do not transition to psychosis. It is an open question whether multivariable models could be developed to predict remission outcomes at the same level of performance and generalizability as those that predict conversion to psychosis. Participants were drawn from the North American Prodrome Longitudinal Study (NAPLS3). An empirically derived set of clinical and demographic predictor variables were selected with elastic net regularization and were included in a gradient boosting machine algorithm to predict prodromal symptom remission. The predictive model was tested in a comparably sized independent sample (NAPLS2). The classification algorithm developed in NAPLS3 achieved an area under the curve of 0.66 (0.60-0.72) with a sensitivity of 0.68 and specificity of 0.53 when tested in an independent external sample (NAPLS2). Overall, future remitters had lower baseline prodromal symptoms than nonremitters. This study is the first to use a data-driven machine-learning approach to assess clinical and demographic predictors of symptomatic remission in individuals who do not convert to psychosis. The predictive power of the models in this study suggest that remission represents a unique clinical phenomenon. Further study is warranted to best understand factors contributing to resilience and recovery from the CHR-P state.

摘要

首次精神病发作前的临床高风险期(CHR-P)已被广泛研究,目的是了解精神病的发展;然而,对于未发展为精神病的 CHR-P 个体的 75%-80%,关注较少。是否可以开发多变量模型来预测缓解结果,其性能和泛化程度与预测向精神病转化的模型一样,这是一个悬而未决的问题。参与者来自北美前驱纵向研究(NAPLS3)。使用弹性网络正则化选择了一组经验衍生的临床和人口统计学预测变量,并将其包含在梯度提升机算法中,以预测前驱症状缓解。该预测模型在规模相当的独立样本(NAPLS2)中进行了测试。在独立的外部样本(NAPLS2)中进行测试时,在 NAPLS3 中开发的分类算法的曲线下面积为 0.66(0.60-0.72),灵敏度为 0.68,特异性为 0.53。总体而言,未来的缓解者的前驱症状基线水平低于非缓解者。这项研究首次使用数据驱动的机器学习方法来评估未发展为精神病的个体中症状缓解的临床和人口统计学预测因素。该研究模型的预测能力表明缓解代表一种独特的临床现象。需要进一步研究以更好地了解导致 CHR-P 状态恢复和缓解的因素。

相似文献

1
Individualized Prediction of Prodromal Symptom Remission for Youth at Clinical High Risk for Psychosis.
Schizophr Bull. 2022 Mar 1;48(2):395-404. doi: 10.1093/schbul/sbab115.
3
Clinical Profiles and Conversion Rates Among Young Individuals With Autism Spectrum Disorder Who Present to Clinical High Risk for Psychosis Services.
J Am Acad Child Adolesc Psychiatry. 2019 Jun;58(6):582-588. doi: 10.1016/j.jaac.2018.09.446. Epub 2019 Feb 20.
4
Dynamic Prediction of Outcomes for Youth at Clinical High Risk for Psychosis: A Joint Modeling Approach.
JAMA Psychiatry. 2023 Oct 1;80(10):1017-1025. doi: 10.1001/jamapsychiatry.2023.2378.
8
North American Prodrome Longitudinal Study (NAPLS 2): The Prodromal Symptoms.
J Nerv Ment Dis. 2015 May;203(5):328-35. doi: 10.1097/NMD.0000000000000290.
9
Cortical abnormalities in youth at clinical high-risk for psychosis: Findings from the NAPLS2 cohort.
Neuroimage Clin. 2019;23:101862. doi: 10.1016/j.nicl.2019.101862. Epub 2019 May 23.

引用本文的文献

1
Incidence, Prevalence, and Stability of Remission in Individuals With Clinical High Risk for Psychosis.
JAMA Netw Open. 2025 Aug 1;8(8):e2525644. doi: 10.1001/jamanetworkopen.2025.25644.
2
Data analysis strategies for the Accelerating Medicines Partnership® Schizophrenia Program.
Schizophrenia (Heidelb). 2025 Apr 3;11(1):53. doi: 10.1038/s41537-025-00561-w.
3
The specificity of the auditory P300 responses and its association with clinical outcomes in youth with psychosis risk syndrome.
Int J Clin Health Psychol. 2024 Jan-Mar;24(1):100437. doi: 10.1016/j.ijchp.2024.100437. Epub 2024 Jan 11.
4
Recent Updates on Predicting Conversion in Youth at Clinical High Risk for Psychosis.
Curr Psychiatry Rep. 2023 Nov;25(11):683-698. doi: 10.1007/s11920-023-01456-2. Epub 2023 Sep 27.
5
Dynamic Prediction of Outcomes for Youth at Clinical High Risk for Psychosis: A Joint Modeling Approach.
JAMA Psychiatry. 2023 Oct 1;80(10):1017-1025. doi: 10.1001/jamapsychiatry.2023.2378.

本文引用的文献

2
Multimodal prognosis of negative symptom severity in individuals at increased risk of developing psychosis.
Transl Psychiatry. 2021 May 24;11(1):312. doi: 10.1038/s41398-021-01409-4.
3
Towards clinical application of prediction models for transition to psychosis: A systematic review and external validation study in the PRONIA sample.
Neurosci Biobehav Rev. 2021 Jun;125:478-492. doi: 10.1016/j.neubiorev.2021.02.032. Epub 2021 Feb 23.
6
Prediction of clinical outcomes beyond psychosis in the ultra-high risk for psychosis population.
Early Interv Psychiatry. 2021 Jun;15(3):642-651. doi: 10.1111/eip.13002. Epub 2020 Jun 17.
7
Electroencephalography and Event-Related Potential Biomarkers in Individuals at Clinical High Risk for Psychosis.
Biol Psychiatry. 2020 Aug 15;88(4):294-303. doi: 10.1016/j.biopsych.2020.04.002. Epub 2020 Apr 14.
8
North American Prodrome Longitudinal Study (NAPLS 3): Methods and baseline description.
Schizophr Res. 2022 May;243:262-267. doi: 10.1016/j.schres.2020.04.010. Epub 2020 Apr 18.
10
The prodromal phase: Time to broaden the scope beyond transition to psychosis?
Schizophr Res. 2020 Feb;216:5-6. doi: 10.1016/j.schres.2019.12.035. Epub 2020 Jan 7.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验