文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

对喂食高脂饮食并接受粪便微生物群移植治疗的小鼠的大脑和海马进行脂质组学分析。

Lipidomic analysis of brain and hippocampus from mice fed with high-fat diet and treated with fecal microbiota transplantation.

作者信息

Li Jinchen, Huang Hongying, Fan Rong, Hua Yinan, Ma Weiwei

机构信息

Beijing Key Laboratory of Environmental Toxicology, School of Public Health, Capital Medical University, Beijing, China.

出版信息

Nutr Metab (Lond). 2023 Feb 15;20(1):12. doi: 10.1186/s12986-023-00730-7.


DOI:10.1186/s12986-023-00730-7
PMID:36793054
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC9930259/
Abstract

BACKGROUND: Dietary fat intake affects brain composition and function. Different types of dietary fatty acids alter species and abundance of brain lipids in mice. The aim of this study is to explore whether the changes are effective through gut microbiota. METHODS: In our study, 8-week-old male C57BL/6 mice were randomly divided into 7 groups and fed with high-fat diet (HFD) with different fatty acid compositions, control (CON) group, long-chain saturated fatty acid (LCSFA) group, medium-chain saturated fatty acid (MCSFA) group, n-3 polyunsaturated fatty acid (n-3 PUFA) group, n-6 polyunsaturated fatty acid (n-6 PUFA) group, monounsaturated fatty acid (MUFA) group and trans fatty acid (TFA) group. Then, the fecal microbiota transplant (FMT) was performed in other pseudo germ-free mice after antibiotic treatment. The experimental groups were orally perfused with gut microbiota that induced by HFD with different types of dietary fatty acids. The mice were fed with regular fodder before and after FMT. High-performance liquid chromatography-mass spectrometry (LC-MS) was used to analysis the composition of fatty acids in the brain of HFD-fed mice and hippocampus of mice treated with FMT which was collected from HFD-fed mice. RESULTS: The content of acyl-carnitines (AcCa) increased and lysophosphatidylgylcerol (LPG) decreased in all kinds of HFD groups. phosphatidic acids (PA), phosphatidylethanolamine (PE) and sphingomyelin (SM) contents were significantly increased in the n-6 PUFA-fed HFD group. The HFD elevated the saturation of brain fatty acyl (FA). Lysophosphatidylcholine (LPC), lysodi-methylphosphatidylethanolamine (LdMePE), monolysocardiolipin (MLCL), dihexosylceramides (Hex2Cer), and wax ester (WE) significantly increased after LCSFA-fed FMT. MLCL reduced and cardiolipin (CL) raised significantly after n-3 PUFA-fed FMT. CONCLUSIONS: The study revealed, HFD and FMT in mice had certain effects on the content and composition of fatty acids in the brain, especially on glycerol phospholipid (GP). The change of AcCa content in FA was a good indicator of dietary fatty acid intake. By altering the fecal microbiota, dietary fatty acids might affect brain lipids.

摘要

背景:膳食脂肪摄入会影响大脑的组成和功能。不同类型的膳食脂肪酸会改变小鼠大脑脂质的种类和丰度。本研究的目的是探讨这些变化是否通过肠道微生物群起作用。 方法:在我们的研究中,将8周龄的雄性C57BL/6小鼠随机分为7组,分别用不同脂肪酸组成的高脂饮食(HFD)喂养,即对照组(CON)、长链饱和脂肪酸(LCSFA)组、中链饱和脂肪酸(MCSFA)组、n-3多不饱和脂肪酸(n-3 PUFA)组、n-6多不饱和脂肪酸(n-6 PUFA)组、单不饱和脂肪酸(MUFA)组和反式脂肪酸(TFA)组。然后,在抗生素处理后的其他无菌小鼠中进行粪便微生物群移植(FMT)。各实验组经口灌注由不同类型膳食脂肪酸的HFD诱导的肠道微生物群。FMT前后小鼠均喂以常规饲料。采用高效液相色谱-质谱联用(LC-MS)分析HFD喂养小鼠大脑及FMT处理小鼠(其肠道微生物群取自HFD喂养小鼠)海马体中的脂肪酸组成。 结果:所有HFD组中酰基肉碱(AcCa)含量增加,溶血磷脂酰甘油(LPG)含量降低。n-6 PUFA喂养的HFD组中磷脂酸(PA)、磷脂酰乙醇胺(PE)和鞘磷脂(SM)含量显著增加。HFD提高了大脑脂肪酰基(FA)的饱和度。LCSFA喂养的FMT后,溶血磷脂酰胆碱(LPC)、溶血二甲基磷脂酰乙醇胺(LdMePE)、单溶血心磷脂(MLCL)、二己糖神经酰胺(Hex2Cer)和蜡酯(WE)显著增加。n-3 PUFA喂养的FMT后,MLCL降低,心磷脂(CL)显著升高。 结论:该研究表明,小鼠中的HFD和FMT对大脑中脂肪酸的含量和组成有一定影响,尤其是对甘油磷脂(GP)。FA中AcCa含量的变化是膳食脂肪酸摄入量的一个良好指标。通过改变粪便微生物群,膳食脂肪酸可能会影响大脑脂质。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a665/9930259/d9f4c3cb76c5/12986_2023_730_Fig9_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a665/9930259/ea7b42378ba9/12986_2023_730_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a665/9930259/28c13e0db0c0/12986_2023_730_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a665/9930259/304c94a7487d/12986_2023_730_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a665/9930259/c8f56ce8c053/12986_2023_730_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a665/9930259/6f89d2cf7383/12986_2023_730_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a665/9930259/322188d4e315/12986_2023_730_Fig6_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a665/9930259/dacdd45f4946/12986_2023_730_Fig7_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a665/9930259/7cfc2cfc024a/12986_2023_730_Fig8_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a665/9930259/d9f4c3cb76c5/12986_2023_730_Fig9_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a665/9930259/ea7b42378ba9/12986_2023_730_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a665/9930259/28c13e0db0c0/12986_2023_730_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a665/9930259/304c94a7487d/12986_2023_730_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a665/9930259/c8f56ce8c053/12986_2023_730_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a665/9930259/6f89d2cf7383/12986_2023_730_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a665/9930259/322188d4e315/12986_2023_730_Fig6_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a665/9930259/dacdd45f4946/12986_2023_730_Fig7_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a665/9930259/7cfc2cfc024a/12986_2023_730_Fig8_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a665/9930259/d9f4c3cb76c5/12986_2023_730_Fig9_HTML.jpg

相似文献

[1]
Lipidomic analysis of brain and hippocampus from mice fed with high-fat diet and treated with fecal microbiota transplantation.

Nutr Metab (Lond). 2023-2-15

[2]
Dietary fatty acids affect learning and memory ability via regulating inflammatory factors in obese mice.

J Nutr Biochem. 2022-5

[3]
High-fat diets containing different types of fatty acids modulate gut-brain axis in obese mice.

Nutr Metab (Lond). 2022-6-23

[4]
The relationship between gut microbiota and susceptibility to type 2 diabetes mellitus in rats.

Chin Med. 2023-5-5

[5]
Impact of a high-fat diet on the fatty acid composition of the retina.

Exp Eye Res. 2020-7

[6]
Dietary saturated fatty acid type impacts obesity-induced metabolic dysfunction and plasma lipidomic signatures in mice.

J Nutr Biochem. 2018-10-21

[7]
Dietary omega-3 polyunsaturated fatty acids alter the fatty acid composition of hepatic and plasma bioactive lipids in C57BL/6 mice: a lipidomic approach.

PLoS One. 2013-11-21

[8]
Total fecal microbiota transplantation alleviates high-fat diet-induced steatohepatitis in mice via beneficial regulation of gut microbiota.

Sci Rep. 2017-5-8

[9]
Lingguizhugan decoction attenuates diet-induced obesity and hepatosteatosis gut microbiota.

World J Gastroenterol. 2019-7-21

[10]
Lipidomic Impacts of an Obesogenic Diet Upon Lewis Lung Carcinoma in Mice.

Front Oncol. 2018-5-11

引用本文的文献

[1]
Gut microbiota from Mori fructus (Morus alba L.) polyphenols and polysaccharides-dosed mice activates the PPARα/PGC-1α signaling pathway to mitigate HFD-induced metabolic syndrome in mice.

Sci Rep. 2025-8-1

[2]
Clinical efficacy of washed microbiota transplantation on metabolic syndrome and metabolic profile of donor outer membrane vesicles.

Front Nutr. 2024-11-19

[3]
Evaluation of Lipid Extraction Protocols for Untargeted Analysis of Mouse Tissue Lipidome.

Metabolites. 2023-9-9

[4]
Short chain fatty acids: the messengers from down below.

Front Neurosci. 2023-7-6

本文引用的文献

[1]
Dietary fatty acids affect learning and memory ability via regulating inflammatory factors in obese mice.

J Nutr Biochem. 2022-5

[2]
Metabolomic signatures for liver tissue and cecum contents in high-fat diet-induced obese mice based on UHPLC-Q-TOF/MS.

Nutr Metab (Lond). 2021-6-30

[3]
Anxiety disturbs the blood plasma metabolome in acute coronary syndrome patients.

Sci Rep. 2021-6-18

[4]
Lipid signature of neural tissues of marine and terrestrial mammals: consistency across species and habitats.

J Comp Physiol B. 2021-7

[5]
Plasma glycerophospholipid profile, erythrocyte n-3 PUFAs, and metabolic syndrome incidence: a prospective study in Chinese men and women.

Am J Clin Nutr. 2021-7-1

[6]
Dietary Fat and Protein Intake in Relation to Plasma Sphingolipids as Determined by a Large-Scale Lipidomic Analysis.

Metabolites. 2021-2-8

[7]
L-Carnitine and Acylcarnitines: Mitochondrial Biomarkers for Precision Medicine.

Metabolites. 2021-1-14

[8]
Effects of Dietary Supplementation with EPA-enriched Phosphatidylcholine and Phosphatidylethanolamine on Glycerophospholipid Profile in Cerebral Cortex of SAMP8 Mice fed with High-fat Diet.

J Oleo Sci. 2021-2-1

[9]
Docosahexaenoic Acid (DHA) Supplementation Alters Phospholipid Species and Lipid Peroxidation Products in Adult Mouse Brain, Heart, and Plasma.

Neuromolecular Med. 2021-3

[10]
Sulfatide Inhibits HMGB1 Secretion by Hindering Toll-Like Receptor 4 Localization Within Lipid Rafts.

Front Immunol. 2020

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索