Department of Biochemistry, Jomo Kenyatta University of Agriculture and Technology, Juja, Kenya.
One Health Center, Institute of Primate Research, Nairobi, Kenya.
Vet Med Sci. 2023 May;9(3):1407-1416. doi: 10.1002/vms3.1090. Epub 2023 Feb 16.
Animal husbandry practices in different livestock production systems and increased livestock-wildlife interactions are thought to be primary drivers of antimicrobial resistance (AMR) in Arid and Semi-Arid Lands (ASALs). Despite a tenfold increase in the camel population within the last decade, paired with widespread use of camel products, there is a lack of comprehensive information concerning beta-lactamase-producing Escherichia coli (E. coli) within these production systems.
Our study sought to establish an AMR profile and to identify and characterise emerging beta-lactamase-producing E. coli isolated from faecal samples obtained from camel herds in Northern Kenya.
The antimicrobial susceptibility profiles of E. coli isolates were established using the disk diffusion method, with beta-lactamase (bla) gene PCR product sequencing performed for phylogenetic grouping and genetic diversity assessments.
Here we show, among the recovered E. coli isolates (n = 123), the highest level of resistance was observed for cefaclor at 28.5% of isolates, followed by cefotaxime at 16.3% and ampicillin at 9.7%. Moreover, extended-spectrum beta-lactamase (ESBL)-producing E. coli harbouring the bla or bla genes were detected in 3.3% of total samples, and are associated with phylogenetic groups B1, B2 and D. Multiple variants of non-ESBL bla genes were detected, the majority of which were the bla and bla genes.
Findings from this study shed light on the increased occurrence of ESBL- and non-ESBL-encoding gene variants in E. coli isolates with demonstrated multidrug resistant phenotypes. This study highlights the need for an expanded One Health approach to understanding AMR transmission dynamics, drivers of AMR development, and appropriate practices for antimicrobial stewardship in camel production systems within ASALs.
不同畜牧业生产系统中的畜牧业实践以及野生动物与牲畜之间的互动增加,被认为是干旱和半干旱地区(ASALs)抗微生物药物耐药性(AMR)的主要驱动因素。尽管在过去十年中骆驼数量增加了十倍,并且广泛使用骆驼产品,但对于这些生产系统中产生β-内酰胺酶的大肠杆菌(E. coli)缺乏全面的信息。
我们的研究旨在建立 AMR 概况,并确定和描述从肯尼亚北部骆驼群获得的粪便样本中分离出的新型β-内酰胺酶产生的大肠杆菌。
使用圆盘扩散法确定大肠杆菌分离株的抗菌敏感性谱,对β-内酰胺酶(bla)基因 PCR 产物进行测序,以进行系统发育分组和遗传多样性评估。
在所回收的大肠杆菌分离株(n = 123)中,我们发现最高的耐药水平为头孢克洛(28.5%的分离株),其次是头孢噻肟(16.3%)和氨苄西林(9.7%)。此外,在总样本的 3.3%中检测到携带 bla 或 bla 基因的产超广谱β-内酰胺酶(ESBL)的大肠杆菌,与 B1、B2 和 D 组密切相关。还检测到多种非 ESBL bla 基因变体,其中大多数是 bla 和 bla 基因。
本研究结果表明,在具有多药耐药表型的大肠杆菌分离株中,ESBL 和非 ESBL 编码基因变体的发生率增加。本研究强调需要采用扩大的“同一健康”方法来了解 AMR 传播动态、AMR 发展的驱动因素以及在 ASALs 中骆驼生产系统中进行抗菌药物管理的适当做法。