Suppr超能文献

利用亲本基因组预测交叉重组。

Prediction of crossover recombination using parental genomes.

机构信息

Facultad de Ingeniería y Ciencias, Pontificia Universidad Javeriana, Cali, Colombia.

AgroBiotechnology Unit, Alliance Bioversity-CIAT, Cali, Colombia.

出版信息

PLoS One. 2023 Feb 16;18(2):e0281804. doi: 10.1371/journal.pone.0281804. eCollection 2023.

Abstract

Meiotic recombination is a crucial cellular process, being one of the major drivers of evolution and adaptation of species. In plant breeding, crossing is used to introduce genetic variation among individuals and populations. While different approaches to predict recombination rates for different species have been developed, they fail to estimate the outcome of crossings between two specific accessions. This paper builds on the hypothesis that chromosomal recombination correlates positively to a measure of sequence identity. It presents a model that uses sequence identity, combined with other features derived from a genome alignment (including the number of variants, inversions, absent bases, and CentO sequences) to predict local chromosomal recombination in rice. Model performance is validated in an inter-subspecific indica x japonica cross, using 212 recombinant inbred lines. Across chromosomes, an average correlation of about 0.8 between experimental and prediction rates is achieved. The proposed model, a characterization of the variation of the recombination rates along the chromosomes, can enable breeding programs to increase the chances of creating novel allele combinations and, more generally, to introduce new varieties with a collection of desirable traits. It can be part of a modern panel of tools that breeders can use to reduce costs and execution times of crossing experiments.

摘要

减数分裂重组是一个关键的细胞过程,是物种进化和适应的主要驱动力之一。在植物育种中,杂交被用来在个体和群体之间引入遗传变异。虽然已经开发出了针对不同物种预测重组率的不同方法,但它们无法估计两个特定品系之间杂交的结果。本文基于染色体重组与序列同一性度量呈正相关的假设。它提出了一个模型,该模型使用序列同一性,结合来自基因组比对的其他特征(包括变体、倒位、缺失碱基和 CentO 序列的数量)来预测水稻中的局部染色体重组。使用 212 个重组自交系在亚种间籼稻 x 粳稻杂交中验证了模型性能。在整个染色体上,实验和预测速率之间的平均相关性约为 0.8。所提出的模型,即沿染色体重组率变化的特征描述,可以使育种计划增加创造新等位基因组合的机会,更普遍地引入具有一系列理想特性的新品种。它可以成为育种者用来降低杂交实验成本和执行时间的现代工具组合的一部分。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1386/9934322/727051aa7eb0/pone.0281804.g001.jpg

相似文献

1
Prediction of crossover recombination using parental genomes.
PLoS One. 2023 Feb 16;18(2):e0281804. doi: 10.1371/journal.pone.0281804. eCollection 2023.
6
Molecular mechanisms and regulation of recombination frequency and distribution in plants.
Theor Appl Genet. 2024 Mar 21;137(4):86. doi: 10.1007/s00122-024-04590-4.
7
Widely distributed hot and cold spots in meiotic recombination as shown by the sequencing of rice F2 plants.
New Phytol. 2015 Jun;206(4):1491-502. doi: 10.1111/nph.13319. Epub 2015 Feb 9.
9
Identification of Indica rice chromosome segments for the improvement of Japonica inbreds and hybrids.
Theor Appl Genet. 2012 May;124(7):1351-64. doi: 10.1007/s00122-012-1792-z. Epub 2012 Feb 7.
10
Identification of quantitative trait loci controlling rice mature seed culturability using chromosomal segment substitution lines.
Plant Cell Rep. 2009 Feb;28(2):247-56. doi: 10.1007/s00299-008-0641-7. Epub 2008 Nov 21.

本文引用的文献

1
Methylation in the CHH Context Allows to Predict Recombination in Rice.
Int J Mol Sci. 2022 Oct 19;23(20):12505. doi: 10.3390/ijms232012505.
2
Evolution of Recombination Landscapes in Diverging Populations of Bread Wheat.
Genome Biol Evol. 2021 Aug 3;13(8). doi: 10.1093/gbe/evab152.
4
Predicting the Landscape of Recombination Using Deep Learning.
Mol Biol Evol. 2020 Jun 1;37(6):1790-1808. doi: 10.1093/molbev/msaa038.
5
Predicted Genetic Gains from Targeted Recombination in Elite Biparental Maize Populations.
Plant Genome. 2019 Mar;12(1). doi: 10.3835/plantgenome2018.08.0062.
7
Advances towards Controlling Meiotic Recombination for Plant Breeding.
Mol Cells. 2017 Nov 30;40(11):814-822. doi: 10.14348/molcells.2017.0171. Epub 2017 Nov 23.
8
Low-coverage resequencing detects meiotic recombination pattern and features in tomato RILs.
DNA Res. 2017 Dec 1;24(6):549-558. doi: 10.1093/dnares/dsx024.
9
Genetic Architecture of a Rice Nested Association Mapping Population.
G3 (Bethesda). 2017 Jun 7;7(6):1913-1926. doi: 10.1534/g3.117.041608.
10
Constructing linkage maps in the genomics era with MapDisto 2.0.
Bioinformatics. 2017 Jul 15;33(14):2224-2225. doi: 10.1093/bioinformatics/btx177.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验