Suppr超能文献

端基桥联二氮过渡金属配合物的路易斯结构和键合分类。

Lewis Structures and the Bonding Classification of End-on Bridging Dinitrogen Transition Metal Complexes.

机构信息

Department of Chemistry, American University of Beirut, Beirut 1107 2020, Lebanon.

Department of Chemistry, Yale University, New Haven, Connecticut 06520, United States.

出版信息

J Am Chem Soc. 2023 Mar 1;145(8):4326-4342. doi: 10.1021/jacs.2c12243. Epub 2023 Feb 16.

Abstract

The activation of dinitrogen by coordination to transition metal ions is a widely used and promising approach to the utilization of Earth's most abundant nitrogen source for chemical synthesis. End-on bridging N complexes (μ-η:η-N) are key species in nitrogen fixation chemistry, but a lack of consensus on the seemingly simple task of assigning a Lewis structure for such complexes has prevented application of valence electron counting and other tools for understanding and predicting reactivity trends. The Lewis structures of bridging N complexes have traditionally been determined by comparing the experimentally observed NN distance to the bond lengths of free N, diazene, and hydrazine. We introduce an alternative approach here and argue that the Lewis structure should be assigned based on the total π-bond order in the MNNM core (number of π-bonds), which derives from the character (bonding or antibonding) and occupancy of the delocalized π-symmetry molecular orbitals (π-MOs) in MNNM. To illustrate this approach, the complexes -(PONOP)MCl (M = W, Re, and Os) are examined in detail. Each complex is shown to have a different number of nitrogen-nitrogen and metal-nitrogen π-bonds, indicated as, respectively: W≡N-N≡W, Re═N═N═Re, and Os-N≡N-Os. It follows that each of these Lewis structures represents a distinct class of complexes (diazanyl, diazenyl, and dinitrogen, respectively), in which the μ-N ligand has a different electron donor number (total of 8e, 6e, or 4e, respectively). We show how this classification can greatly aid in understanding and predicting the properties and reactivity patterns of μ-N complexes.

摘要

过渡金属离子配位活化二氮是利用地球最丰富氮源进行化学合成的一种广泛应用和有前景的方法。端到端桥联氮配合物(μ-η:η-N)是固氮化学中的关键物种,但由于缺乏对这类配合物路易斯结构分配的共识,阻止了价电子计数和其他用于理解和预测反应性趋势的工具的应用。桥联氮配合物的路易斯结构传统上是通过将实验观察到的 NN 距离与自由 N、二氮和联氨的键长进行比较来确定的。我们在这里引入了一种替代方法,并认为路易斯结构应该基于 MNNM 核中的总π键键级(π 键数)来分配,这源自 MNNM 中离域π对称性分子轨道(π-MO)的特征(成键或反键)和占据。为了说明这种方法,详细研究了 -(PONOP)MCl(M = W、Re 和 Os)复合物。结果表明,每个配合物都具有不同数量的氮-氮和金属-氮π 键,分别表示为:W≡N-N≡W、Re═N═N═Re 和 Os-N≡N-Os。因此,这些路易斯结构中的每一个都代表了不同类别的配合物(分别为二氮、重氮基和二氮),其中 μ-N 配体具有不同的电子供体数(分别为 8e、6e 或 4e)。我们展示了这种分类如何极大地有助于理解和预测 μ-N 配合物的性质和反应性模式。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/720b/9983020/4ab462f51063/ja2c12243_0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验