Suppr超能文献

基于遗传算法的钼基固氮催化剂的发现

Discovery of molybdenum based nitrogen fixation catalysts with genetic algorithms.

作者信息

Strandgaard Magnus, Seumer Julius, Jensen Jan H

机构信息

Department of Chemistry, University of Copenhagen Denmark

出版信息

Chem Sci. 2024 Jun 7;15(27):10638-10650. doi: 10.1039/d4sc02227k. eCollection 2024 Jul 10.

Abstract

Computational discovery of organometallic catalysts that effectively catalyze nitrogen fixation is a difficult task. The complexity of the chemical reactions involved and the lack of understanding of natures enzyme catalysts raises the need for intricate computational models. In this study, we use a dataset of 91 experimentally verified ligands as starting population for a Genetic Algorithm (GA) and use this to discover molybdenum based nitrogen fixation catalyst in trigonal bipyramidal and octahedral configurations. Through evolutionary discovery with a semi-empirical quantum method driven GA and a density functional theory (DFT) based screening process, we find 3 promising catalyst candidates that are shown to effectively catalyze the first protonation step of the Schrock cycle. Synthetic accessibility (SA) scores are used to guide the GA towards reasonable ligands and the work features a description of the GA framework, including pre-screening of catalyst candidates that involves assignment of metal coordination atoms and catalyst stereoisomers. This research thus not only offers insights into the specific field of molybdenum-based catalysts for nitrogen fixation but also demonstrates the broader applicability and potential of genetic algorithms in the field of catalyst discovery and materials science.

摘要

计算发现能够有效催化固氮的有机金属催化剂是一项艰巨的任务。所涉及化学反应的复杂性以及对天然酶催化剂的了解不足,增加了对复杂计算模型的需求。在本研究中,我们使用一个包含91种经实验验证的配体的数据集作为遗传算法(GA)的起始种群,并以此来发现三角双锥和八面体构型的钼基固氮催化剂。通过由半经验量子方法驱动的遗传算法进行进化发现以及基于密度泛函理论(DFT)的筛选过程,我们找到了3种有前景的催化剂候选物,它们被证明能有效催化施罗克循环的第一步质子化反应。合成可及性(SA)分数用于引导遗传算法寻找合理的配体,这项工作还描述了遗传算法框架,包括对催化剂候选物的预筛选,其中涉及金属配位原子的分配和催化剂立体异构体。因此,这项研究不仅为钼基固氮催化剂这一特定领域提供了见解,还展示了遗传算法在催化剂发现和材料科学领域更广泛的适用性和潜力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8bca/11234868/2e182492ead9/d4sc02227k-f1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验