Zhang Zhe, Wei Xiawei
Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu 610041, PR China; State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu 610041, PR China.
Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu 610041, PR China.
Semin Cancer Biol. 2023 May;90:57-72. doi: 10.1016/j.semcancer.2023.02.005. Epub 2023 Feb 14.
The rapid development of artificial intelligence (AI) technologies in the context of the vast amount of collectable data obtained from high-throughput sequencing has led to an unprecedented understanding of cancer and accelerated the advent of a new era of clinical oncology with a tone of precision treatment and personalized medicine. However, the gains achieved by a variety of AI models in clinical oncology practice are far from what one would expect, and in particular, there are still many uncertainties in the selection of clinical treatment options that pose significant challenges to the application of AI in clinical oncology. In this review, we summarize emerging approaches, relevant datasets and open-source software of AI and show how to integrate them to address problems from clinical oncology and cancer research. We focus on the principles and procedures for identifying different antitumor strategies with the assistance of AI, including targeted cancer therapy, conventional cancer therapy, and cancer immunotherapy. In addition, we also highlight the current challenges and directions of AI in clinical oncology translation. Overall, we hope this article will provide researchers and clinicians with a deeper understanding of the role and implications of AI in precision cancer therapy, and help AI move more quickly into accepted cancer guidelines.
Cancer Discov. 2021-4
Adv Exp Med Biol. 2022
Cancer Sci. 2020-3-21
Cancer Cell. 2021-7-12
Oncotarget. 2024-8-26
Nat Rev Clin Oncol. 2019-8-9
Signal Transduct Target Ther. 2025-2-21
Front Med (Lausanne). 2024-11-7
Pharmacogenomics. 2024
Lancet Reg Health Eur. 2024-9-6
Pharmaceuticals (Basel). 2024-6-21
J Am Med Inform Assoc. 2024-5-20