Verlingue Loïc, Boyer Clara, Olgiati Louise, Brutti Mairesse Clément, Morel Daphné, Blay Jean-Yves
Centre Léon Bérard, Centre de Recherche en Cancérologie de Lyon, France.
INSERM U1030, Molecular Radiotherapy, Villejuif, France.
Lancet Reg Health Eur. 2024 Sep 6;46:101064. doi: 10.1016/j.lanepe.2024.101064. eCollection 2024 Nov.
In this Personal View, we address the latest advancements in automatic text analysis with artificial intelligence (AI) in medicine, with a focus on its implications in aiding treatment decisions in medical oncology. Acknowledging that a majority of hospital medical content is embedded in narrative format, natural language processing has become one of the most dynamic research fields for developing clinical decision support tools. In addition, large language models have recently reached unprecedented performance, notably when answering medical questions. Emerging applications include prognosis estimation, treatment recommendations, multidisciplinary tumor board recommendations and matching patients to recruiting clinical trials. Altogether, we advocate for a forward-looking approach in which the community efficiently initiates global prospective clinical evaluations of promising AI-based decision support systems. Such assessments will be essential to validate and evaluate potential biases, ensuring these innovations can be effectively and safely translated into practical tools for oncological practice. We are at a pivotal moment, where continued advancements in patient care must be pursued with scientific rigor.
在这篇个人观点文章中,我们探讨了医学领域利用人工智能(AI)进行自动文本分析的最新进展,重点关注其在协助肿瘤内科治疗决策方面的影响。鉴于大多数医院医疗内容都以叙述形式呈现,自然语言处理已成为开发临床决策支持工具最具活力的研究领域之一。此外,大语言模型最近达到了前所未有的性能,尤其是在回答医学问题时。新兴应用包括预后评估、治疗建议、多学科肿瘤专家委员会建议以及为患者匹配正在招募的临床试验。总体而言,我们倡导一种前瞻性方法,即该领域有效地启动对有前景的基于AI的决策支持系统的全球前瞻性临床评估。此类评估对于验证和评估潜在偏差至关重要,以确保这些创新能够有效且安全地转化为肿瘤学实践的实用工具。我们正处于一个关键时刻,必须以科学严谨的态度追求患者护理的持续进步。