Suppr超能文献

人工智能在数字病理学中的应用——诊断和精准肿瘤学的新工具。

Artificial intelligence in digital pathology - new tools for diagnosis and precision oncology.

机构信息

Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, USA.

Department of Pathology, Yale University School of Medicine, New Haven, CT, USA.

出版信息

Nat Rev Clin Oncol. 2019 Nov;16(11):703-715. doi: 10.1038/s41571-019-0252-y. Epub 2019 Aug 9.

Abstract

In the past decade, advances in precision oncology have resulted in an increased demand for predictive assays that enable the selection and stratification of patients for treatment. The enormous divergence of signalling and transcriptional networks mediating the crosstalk between cancer, stromal and immune cells complicates the development of functionally relevant biomarkers based on a single gene or protein. However, the result of these complex processes can be uniquely captured in the morphometric features of stained tissue specimens. The possibility of digitizing whole-slide images of tissue has led to the advent of artificial intelligence (AI) and machine learning tools in digital pathology, which enable mining of subvisual morphometric phenotypes and might, ultimately, improve patient management. In this Perspective, we critically evaluate various AI-based computational approaches for digital pathology, focusing on deep neural networks and 'hand-crafted' feature-based methodologies. We aim to provide a broad framework for incorporating AI and machine learning tools into clinical oncology, with an emphasis on biomarker development. We discuss some of the challenges relating to the use of AI, including the need for well-curated validation datasets, regulatory approval and fair reimbursement strategies. Finally, we present potential future opportunities for precision oncology.

摘要

在过去的十年中,精准肿瘤学的进展导致了对预测性检测的需求增加,这些检测能够选择和分层治疗患者。癌症、基质和免疫细胞之间相互作用的信号和转录网络的巨大差异,使得基于单个基因或蛋白质开发功能相关的生物标志物变得复杂。然而,这些复杂过程的结果可以在染色组织标本的形态特征中独特地捕捉到。组织全玻片图像数字化的可能性导致了人工智能 (AI) 和机器学习工具在数字病理学中的出现,这些工具能够挖掘亚视觉形态表型,并最终改善患者管理。在本观点中,我们批判性地评估了数字病理学中的各种基于 AI 的计算方法,重点是深度学习网络和“手工制作”的基于特征的方法。我们旨在为将人工智能和机器学习工具纳入临床肿瘤学提供一个广泛的框架,重点是生物标志物的开发。我们讨论了与使用人工智能相关的一些挑战,包括对精心策划的验证数据集、监管批准和公平报销策略的需求。最后,我们提出了精准肿瘤学的一些潜在未来机会。

相似文献

1
Artificial intelligence in digital pathology - new tools for diagnosis and precision oncology.
Nat Rev Clin Oncol. 2019 Nov;16(11):703-715. doi: 10.1038/s41571-019-0252-y. Epub 2019 Aug 9.
3
Overcoming the challenges to implementation of artificial intelligence in pathology.
J Natl Cancer Inst. 2023 Jun 8;115(6):608-612. doi: 10.1093/jnci/djad048.
4
Artificial Intelligence for Precision Oncology.
Adv Exp Med Biol. 2022;1361:249-268. doi: 10.1007/978-3-030-91836-1_14.
5
Artificial intelligence and digital biomarker in precision pathology guiding immune therapy selection and precision oncology.
Cancer Rep (Hoboken). 2023 Jul;6(7):e1796. doi: 10.1002/cnr2.1796. Epub 2023 Feb 22.
7
Precision immunoprofiling by image analysis and artificial intelligence.
Virchows Arch. 2019 Apr;474(4):511-522. doi: 10.1007/s00428-018-2485-z. Epub 2018 Nov 23.
8
Artificial intelligence in anatomical pathology: building a strong foundation for precision medicine.
Hum Pathol. 2023 Feb;132:31-38. doi: 10.1016/j.humpath.2022.07.008. Epub 2022 Jul 20.
9
The digital revolution in pathology: Towards a smarter approach to research and treatment.
Tumori. 2024 Aug;110(4):241-251. doi: 10.1177/03008916241231035. Epub 2024 Apr 12.
10
Deep learning powers cancer diagnosis in digital pathology.
Comput Med Imaging Graph. 2021 Mar;88:101820. doi: 10.1016/j.compmedimag.2020.101820. Epub 2020 Dec 11.

引用本文的文献

1
Congenital and Neonatal Skin Disorders: Histopathological Diagnosis and Syndromic Associations.
Cureus. 2025 Aug 14;17(8):e90102. doi: 10.7759/cureus.90102. eCollection 2025 Aug.
5
Parents' understanding and attitudes toward the application of AI in pediatric healthcare: a cross-sectional survey study.
Front Public Health. 2025 Aug 20;13:1654482. doi: 10.3389/fpubh.2025.1654482. eCollection 2025.
8
Spatial Multiplexing and Omics.
Nat Rev Methods Primers. 2024;4(1). doi: 10.1038/s43586-024-00330-6. Epub 2024 Aug 1.
10
Multimodal Integration Enhances Tissue Image Information Content: A Deep Feature Perspective.
Bioengineering (Basel). 2025 Aug 21;12(8):894. doi: 10.3390/bioengineering12080894.

本文引用的文献

1
Stop Explaining Black Box Machine Learning Models for High Stakes Decisions and Use Interpretable Models Instead.
Nat Mach Intell. 2019 May;1(5):206-215. doi: 10.1038/s42256-019-0048-x. Epub 2019 May 13.
2
Development and validation of a deep learning algorithm for improving Gleason scoring of prostate cancer.
NPJ Digit Med. 2019 Jun 7;2:48. doi: 10.1038/s41746-019-0112-2. eCollection 2019.
4
Microscopy with ultraviolet surface excitation for rapid slide-free histology.
Nat Biomed Eng. 2017 Dec;1(12):957-966. doi: 10.1038/s41551-017-0165-y. Epub 2017 Dec 4.
5
HistoQC: An Open-Source Quality Control Tool for Digital Pathology Slides.
JCO Clin Cancer Inform. 2019 Apr;3:1-7. doi: 10.1200/CCI.18.00157.
6
Applications of machine learning in drug discovery and development.
Nat Rev Drug Discov. 2019 Jun;18(6):463-477. doi: 10.1038/s41573-019-0024-5.
7
Histo-genomics: digital pathology at the forefront of precision medicine.
Diagnosis (Berl). 2019 Aug 27;6(3):203-212. doi: 10.1515/dx-2018-0064.
8
Computer aided quantification of intratumoral stroma yields an independent prognosticator in rectal cancer.
Cell Oncol (Dordr). 2019 Jun;42(3):331-341. doi: 10.1007/s13402-019-00429-z. Epub 2019 Mar 1.
9
NCCN Guidelines Insights: Breast Cancer, Version 3.2018.
J Natl Compr Canc Netw. 2019 Feb;17(2):118-126. doi: 10.6004/jnccn.2019.0009.
10
New European Union Regulations Related to Whole Slide Image Scanners and Image Analysis Software.
J Pathol Inform. 2019 Jan 24;10:2. doi: 10.4103/jpi.jpi_33_18. eCollection 2019.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验