Suppr超能文献

人体外周或中枢冷却过程中的皮质脊髓和脊髓兴奋性。

Corticospinal and spinal excitability during peripheral or central cooling in humans.

机构信息

Faculty of Kinesiology and Recreational Management, University of Manitoba, Canada.

Dept. of Physiology and Pathophysiology, University of Manitoba, Canada.

出版信息

J Therm Biol. 2023 Feb;112:103489. doi: 10.1016/j.jtherbio.2023.103489. Epub 2023 Jan 29.

Abstract

Cold exposure can impair fine and gross motor control and threaten survival. Most motor task decrement is due to peripheral neuromuscular factors. Less is known about cooling on central neural factors. Corticospinal and spinal excitability were determined during cooling of the skin (T) and core (T). Eight subjects (four female) were actively cooled in a liquid perfused suit for 90 min (2 °C inflow temperature), passively cooled for 7 min, and then rewarmed for 30 min (41 °C inflow temperature). Stimulation blocks included 10 transcranial magnetic stimulations [eliciting motor evoked potentials (MEPs) which indicate corticospinal excitability], 8 trans-mastoid electrical stimulations [eliciting cervicomedullary evoked potentials (CMEPs) which indicate spinal excitability] and 2 brachial plexus electrical stimulations [eliciting maximal compound motor action potentials (M)]. These stimulations were delivered every 30 min. Cooling for 90 min reduced T to 18.2 °C while T did not change. At the end of rewarming T returned to baseline while T decreased by 0.8 °C (afterdrop) (P < 0.001). Metabolic heat production was higher than baseline at the end of passive cooling (P = 0.01), and 7 min into rewarming (P = 0.04). MEP/M remained unchanged throughout. CMEP/M increased by 38% at end cooling (although increased variability at this time rendered the increase insignificant, P = 0.23) and 58% at end warming when T was 0.8 °C below baseline (P = 0.02). Cooling increased spinal excitability but not corticospinal excitability. Cooling may decrease cortical and/or supraspinal excitability which is compensated for by increased spinal excitability. This compensation is key to providing a motor task and survival advantage.

摘要

寒冷暴露会损害精细和粗略运动控制,并威胁生存。大多数运动任务的减少是由于周围神经肌肉因素。关于冷却对中枢神经因素的影响知之甚少。在皮肤(T)和核心(T)冷却期间,确定皮质脊髓和脊髓兴奋性。八名受试者(四名女性)在液体灌注服中主动冷却 90 分钟(2°C 流入温度),被动冷却 7 分钟,然后再加热 30 分钟(41°C 流入温度)。刺激块包括 10 次经颅磁刺激[引起运动诱发电位(MEPs),表明皮质脊髓兴奋性],8 次经乳突电刺激[引起颈髓诱发电位(CMEPs),表明脊髓兴奋性]和 2 次臂丛神经电刺激[引起最大复合运动动作电位(M)]。这些刺激每 30 分钟进行一次。90 分钟的冷却将 T 降低到 18.2°C,而 T 没有变化。在复温结束时,T 恢复到基线,而 T 下降 0.8°C(后降)(P<0.001)。在被动冷却结束时,代谢产热高于基线(P=0.01),并且在复温 7 分钟时(P=0.04)。MEP/M 在整个过程中保持不变。CMEP/M 在结束冷却时增加了 38%(尽管此时增加了变异性,使增加变得不显著,P=0.23),在结束加热时增加了 58%,此时 T 比基线低 0.8°C(P=0.02)。冷却增加了脊髓兴奋性,但不增加皮质脊髓兴奋性。冷却可能会降低皮质和/或皮质上的兴奋性,这会被脊髓兴奋性的增加所补偿。这种补偿是提供运动任务和生存优势的关键。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验