Quantinuum, Terrington House, 13-15 Hills Road, Cambridge CB2 1NL, United Kingdom.
Laboratoire de Physique de l'École Normale Supérieure, CNRS, ENS & PSL University, Sorbonne Université, Université de Paris, 75005 Paris, France.
Phys Rev E. 2023 Jan;107(1-1):014137. doi: 10.1103/PhysRevE.107.014137.
We study the crossover from the macroscopic fluctuation theory (MFT), which describes one-dimensional stochastic diffusive systems at late times, to the weak noise theory (WNT), which describes the Kardar-Parisi-Zhang (KPZ) equation at early times. We focus on the example of the diffusion in a time-dependent random field, observed in an atypical direction which induces an asymmetry. The crossover is described by a nonlinear system which interpolates between the derivative and the standard nonlinear Schrodinger equations in imaginary time. We solve this system using the inverse scattering method for mixed-time boundary conditions introduced by us to solve the WNT. We obtain the rate function which describes the large deviations of the sample-to-sample fluctuations of the cumulative distribution of the tracer position. It exhibits a crossover as the asymmetry is varied, recovering both MFT and KPZ limits. We sketch how it is consistent with extracting the asymptotics of a Fredholm determinant formula, recently derived for sticky Brownian motions. The crossover mechanism studied here should generalize to a larger class of models described by the MFT. Our results apply to study extremal diffusion beyond Einstein's theory.
我们研究了从描述一维随机扩散系统的宏观涨落理论(MFT)到描述早期Kardar-Parisi-Zhang(KPZ)方程的弱噪声理论(WNT)的转变。我们专注于在非典型方向观察到的时变随机场中的扩散的例子,这种方向诱导了不对称性。这种转变由一个非线性系统描述,该系统在虚时间中在导数和标准非线性薛定谔方程之间进行插值。我们使用我们引入的混合时间边界条件的逆散射方法来解决这个系统,以解决 WNT。我们得到了描述示踪剂位置累积分布的样本到样本涨落的大偏差的率函数。它表现出随着不对称性的变化而发生的转变,恢复了 MFT 和 KPZ 极限。我们概述了它如何与最近为粘性布朗运动推导的 Fredholm 行列式公式的渐近展开一致。这里研究的转变机制应该推广到更广泛的由 MFT 描述的模型类别。我们的结果适用于研究超越爱因斯坦理论的极端扩散。