School of Mechanical Engineering, Northwestern Polytechnical University, Xi'an 710072, China.
School of Artificial Intelligence, Optics, and Electronics (iOPEN), Northwestern Polytechnical University, Xi'an 710072, China.
Phys Rev E. 2023 Jan;107(1-1):014216. doi: 10.1103/PhysRevE.107.014216.
The spontaneous emergence of patterns in nature, such as stripes and spots, can be mathematically explained by reaction-diffusion systems. These patterns are often referred as Turing patterns to honor the seminal work of Alan Turing in the early 1950s. With the coming of age of network science, and with its related departure from diffusive nearest-neighbor interactions to long-range links between nodes, additional layers of complexity behind pattern formation have been discovered, including irregular spatiotemporal patterns. Here we investigate the formation of Turing patterns in simplicial complexes, where links no longer connect just pairs of nodes but can connect three or more nodes. Such higher-order interactions are emerging as a new frontier in network science, in particular describing group interaction in various sociological and biological systems, so understanding pattern formation under these conditions is of the utmost importance. We show that a canonical reaction-diffusion system defined over a simplicial complex yields Turing patterns that fundamentally differ from patterns observed in traditional networks. For example, we observe a stable distribution of Turing patterns where the fraction of nodes with reactant concentrations above the equilibrium point is exponentially related to the average degree of 2-simplexes, and we uncover parameter regions where Turing patterns will emerge only under higher-order interactions, but not under pairwise interactions.
自然界中图案(如条纹和斑点)的自发出现可以用反应-扩散系统在数学上解释。这些图案通常被称为图灵模式,以纪念艾伦·图灵在 20 世纪 50 年代初的开创性工作。随着网络科学的成熟,以及从扩散最近邻相互作用向节点之间的远程链接的相关转变,在图案形成背后发现了更多的复杂性层次,包括不规则的时空模式。在这里,我们研究了在单纯复形中图灵模式的形成,其中链接不再连接仅仅两个节点,而是可以连接三个或更多节点。这种更高阶的相互作用正在成为网络科学的一个新前沿,特别是在描述各种社会学和生物学系统中的群体相互作用方面,因此理解这些条件下的模式形成至关重要。我们表明,定义在单纯复形上的典型反应-扩散系统产生的图灵模式与在传统网络中观察到的模式有根本的不同。例如,我们观察到图灵模式的稳定分布,其中反应物浓度高于平衡点的节点分数与 2-单纯形的平均度数呈指数相关,并且我们发现了只有在高阶相互作用下才会出现图灵模式而不是在成对相互作用下的参数区域。