Suppr超能文献

基于空间非均匀反应扩散系统的图案形成

Pattern formation from spatially heterogeneous reaction-diffusion systems.

作者信息

Van Gorder Robert A

机构信息

Department of Mathematics and Statistics, University of Otago, PO Box 56, Dunedin 9054, New Zealand.

出版信息

Philos Trans A Math Phys Eng Sci. 2021 Dec 27;379(2213):20210001. doi: 10.1098/rsta.2021.0001. Epub 2021 Nov 8.

Abstract

First proposed by Turing in 1952, the eponymous Turing instability and Turing pattern remain key tools for the modern study of diffusion-driven pattern formation. In spatially homogeneous Turing systems, one or a few linear Turing modes dominate, resulting in organized patterns (peaks in one dimension; spots, stripes, labyrinths in two dimensions) which repeats in space. For a variety of reasons, there has been increasing interest in understanding irregular patterns, with spatial heterogeneity in the underlying reaction-diffusion system identified as one route to obtaining irregular patterns. We study pattern formation from reaction-diffusion systems which involve spatial heterogeneity, by way of both analytical and numerical techniques. We first extend the classical Turing instability analysis to track the evolution of linear Turing modes and the nascent pattern, resulting in a more general instability criterion which can be applied to spatially heterogeneous systems. We also calculate nonlinear mode coefficients, employing these to understand how each spatial mode influences the long-time evolution of a pattern. Unlike for the standard spatially homogeneous Turing systems, spatially heterogeneous systems may involve many Turing modes of different wavelengths interacting simultaneously, with resulting patterns exhibiting a high degree of variation over space. We provide a number of examples of spatial heterogeneity in reaction-diffusion systems, both mathematical (space-varying diffusion parameters and reaction kinetics, mixed boundary conditions, space-varying base states) and physical (curved anisotropic domains, apical growth of space domains, chemicalsimmersed within a flow or a thermal gradient), providing a qualitative understanding of how spatial heterogeneity can be used to modify classical Turing patterns. This article is part of the theme issue 'Recent progress and open frontiers in Turing's theory of morphogenesis'.

摘要

图灵不稳定性和图灵模式由图灵在1952年首次提出,至今仍是扩散驱动模式形成现代研究的关键工具。在空间均匀的图灵系统中,一种或几种线性图灵模式占主导地位,从而产生在空间中重复出现的有组织模式(一维中的峰值;二维中的斑点、条纹、迷宫)。由于多种原因,人们对理解不规则模式的兴趣与日俱增,而潜在反应扩散系统中的空间异质性被认为是获得不规则模式的一条途径。我们通过分析和数值技术研究涉及空间异质性的反应扩散系统中的模式形成。我们首先扩展经典的图灵不稳定性分析,以追踪线性图灵模式和新生模式的演化,从而得到一个更通用的不稳定性判据,可应用于空间非均匀系统。我们还计算非线性模式系数,利用这些系数来理解每个空间模式如何影响模式的长期演化。与标准的空间均匀图灵系统不同,空间非均匀系统可能涉及许多不同波长的图灵模式同时相互作用,所产生的模式在空间上表现出高度的变化。我们给出了反应扩散系统中空间异质性的一些例子,包括数学方面的(空间变化的扩散参数和反应动力学、混合边界条件、空间变化的基态)和物理方面的(弯曲各向异性域、空间域的顶端生长、沉浸在流场或热梯度中的化学物质),定性地说明了如何利用空间异质性来改变经典的图灵模式。本文是主题为“图灵形态发生理论的最新进展与前沿领域”的一部分。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验