Institute of Physics, Chemnitz University of Technology, 09107 Chemnitz, Germany.
School of Mathematical Sciences, University of Adelaide, Adelaide, South Australia 5005, Australia.
Phys Rev E. 2023 Jan;107(1-1):014208. doi: 10.1103/PhysRevE.107.014208.
In finite-dimensional, chaotic, Lorenz-like wave-particle dynamical systems one can find diffusive trajectories, which share their appearance with that of laminar chaotic diffusion [Phys. Rev. Lett. 128, 074101 (2022)0031-900710.1103/PhysRevLett.128.074101] known from delay systems with lag-time modulation. Applying, however, to such systems a test for laminar chaos, as proposed in [Phys. Rev. E 101, 032213 (2020)2470-004510.1103/PhysRevE.101.032213], these signals fail such a test, thus leading to the notion of pseudolaminar chaos. The latter can be interpreted as integrated periodically driven on-off intermittency. We demonstrate that, on a signal level, true laminar and pseudolaminar chaos are hardly distinguishable in systems with and without dynamical noise. However, very pronounced differences become apparent when correlations of signals and increments are considered. We compare and contrast these properties of pseudolaminar chaos with true laminar chaos.
在有限维、混沌、洛伦兹型波粒动力学系统中,可以发现弥散轨迹,它们的外观与滞后时间调制的延迟系统中已知的层流混沌扩散相似[Phys. Rev. Lett. 128, 074101 (2022)0031-900710.1103/PhysRevLett.128.074101]。然而,将[Phys. Rev. E 101, 032213 (2020)2470-004510.1103/PhysRevE.101.032213]中提出的用于层流混沌的测试应用于这些系统时,这些信号未能通过该测试,从而导致了伪层流混沌的概念。后者可以解释为周期性驱动的开-关间断性的积分。我们证明,在具有和不具有动力噪声的系统中,真层流混沌和伪层流混沌在信号水平上几乎无法区分。然而,当考虑信号和增量的相关性时,就会出现非常明显的差异。我们比较并对比了伪层流混沌与真层流混沌的这些特性。