Rempel Erico L, Chian Abraham C-L, Miranda Rodrigo A
Institute of Aeronautical Technology (ITA) and World Institute for Space Environment Research (WISER), CTA/ITA/IEFM, São José dos Campos, São Paulo 12228-900, Brazil.
Phys Rev E Stat Nonlin Soft Matter Phys. 2007 Nov;76(5 Pt 2):056217. doi: 10.1103/PhysRevE.76.056217. Epub 2007 Nov 30.
In a recent study [Rempel and Chian, Phys. Rev. Lett. 98, 014101 (2007)], it has been shown that nonattracting chaotic sets (chaotic saddles) are responsible for intermittency in the regularized long-wave equation that undergoes a transition to spatiotemporal chaos (STC) via quasiperiodicity and temporal chaos. In the present paper, it is demonstrated that a similar mechanism is present in the damped Kuramoto-Sivashinsky equation. Prior to the onset of STC, a spatiotemporally chaotic saddle coexists with a spatially regular attractor. After the transition to STC, the chaotic saddle merges with the attractor, generating intermittent bursts of STC that dominate the post-transition dynamics.
在最近的一项研究[Rempel和Chian,《物理评论快报》98,014101(2007)]中,已经表明非吸引性混沌集(混沌鞍点)是正则化长波方程中间歇性的原因,该方程通过准周期性和时间混沌向时空混沌(STC)转变。在本文中,证明了在阻尼Kuramoto-Sivashinsky方程中存在类似的机制。在STC开始之前,一个时空混沌鞍点与一个空间正则吸引子共存。向STC转变之后,混沌鞍点与吸引子合并,产生STC的间歇性爆发,主导转变后的动力学。